Hole Concealment for Depth Image Using Pixel Classification in Multiview System

Author(s):  
Geon-Won Lee ◽  
Jong-Ki Han
Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5318
Author(s):  
Dongnian Li ◽  
Changming Li ◽  
Chengjun Chen ◽  
Zhengxu Zhao

Locating and identifying the components mounted on a printed circuit board (PCB) based on machine vision is an important and challenging problem for automated PCB inspection and automated PCB recycling. In this paper, we propose a PCB semantic segmentation method based on depth images that segments and recognizes components in the PCB through pixel classification. The image training set for the PCB was automatically synthesized with graphic rendering. Based on a series of concentric circles centered at the given depth pixel, we extracted the depth difference features from the depth images in the training set to train a random forest pixel classifier. By using the constructed random forest pixel classifier, we performed semantic segmentation for the PCB to segment and recognize components in the PCB through pixel classification. Experiments on both synthetic and real test sets were conducted to verify the effectiveness of the proposed method. The experimental results demonstrate that our method can segment and recognize most of the components from a real depth image of the PCB. Our method is immune to illumination changes and can be implemented in parallel on a GPU.


2020 ◽  
Vol 8 (6) ◽  
pp. 5612-5617

We describe face classification algorithm which can be used for object recognition, pose estimation, tracking and gesture recognition which are useful for human-computer interaction. We make use of depth camera (Creative Interactive Gesture Camera – Kinect®) to acquire the images which gives several advantages when compared over a normal RGB optical camera. In this paper we demonstrate a intermediate parsing scheme, so that an accurate per-pixel classification is used to localize the joints. We make use of an efficient random decision forest to classify the image which in turn helps to estimate the pose. As we employ depth camera to acquire depth image it may contain holes on or around depth map, so we first fill those holes and the classify the image. Simulation results was observed by varying several training parameters of the decision forest. We generally learned an efficient method which stems the basics in the development of pose estimation and tracking. Also we gained an intensive knowledge on Decision forests


2017 ◽  
Vol 39 (6) ◽  
pp. 106-121
Author(s):  
A. O. Verpahovskaya ◽  
V. N. Pilipenko ◽  
Е. V. Pylypenko

2019 ◽  
Author(s):  
Han-Chi Hsieh ◽  
Wei-Zhong Zheng ◽  
Ko-Chiang Chen ◽  
Ying-Hui Lai

2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1166
Author(s):  
Wei Zhang ◽  
Liang Gong ◽  
Suyue Chen ◽  
Wenjie Wang ◽  
Zhonghua Miao ◽  
...  

In the process of collaborative operation, the unloading automation of the forage harvester is of great significance to improve harvesting efficiency and reduce labor intensity. However, non-standard transport trucks and unstructured field environments make it extremely difficult to identify and properly position loading containers. In this paper, a global model with three coordinate systems is established to describe a collaborative harvesting system. Then, a method based on depth perception is proposed to dynamically identify and position the truck container, including data preprocessing, point cloud pose transformation based on the singular value decomposition (SVD) algorithm, segmentation and projection of the upper edge, edge lines extraction and corner points positioning based on the Random Sample Consensus (RANSAC) algorithm, and fusion and visualization of results on the depth image. Finally, the effectiveness of the proposed method has been verified by field experiments with different trucks. The results demonstrated that the identification accuracy of the container region is about 90%, and the absolute error of center point positioning is less than 100 mm. The proposed method is robust to containers with different appearances and provided a methodological reference for dynamic identification and positioning of containers in forage harvesting.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Seyed Muhammad Hossein Mousavi ◽  
S. Younes Mirinezhad

AbstractThis study presents a new color-depth based face database gathered from different genders and age ranges from Iranian subjects. Using suitable databases, it is possible to validate and assess available methods in different research fields. This database has application in different fields such as face recognition, age estimation and Facial Expression Recognition and Facial Micro Expressions Recognition. Image databases based on their size and resolution are mostly large. Color images usually consist of three channels namely Red, Green and Blue. But in the last decade, another aspect of image type has emerged, named “depth image”. Depth images are used in calculating range and distance between objects and the sensor. Depending on the depth sensor technology, it is possible to acquire range data differently. Kinect sensor version 2 is capable of acquiring color and depth data simultaneously. Facial expression recognition is an important field in image processing, which has multiple uses from animation to psychology. Currently, there is a few numbers of color-depth (RGB-D) facial micro expressions recognition databases existing. With adding depth data to color data, the accuracy of final recognition will be increased. Due to the shortage of color-depth based facial expression databases and some weakness in available ones, a new and almost perfect RGB-D face database is presented in this paper, covering Middle-Eastern face type. In the validation section, the database will be compared with some famous benchmark face databases. For evaluation, Histogram Oriented Gradients features are extracted, and classification algorithms such as Support Vector Machine, Multi-Layer Neural Network and a deep learning method, called Convolutional Neural Network or are employed. The results are so promising.


Author(s):  
Giada Bianchetti ◽  
Fabio Ciccarone ◽  
Maria Rosa Ciriolo ◽  
Marco De Spirito ◽  
Giovambattista Pani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document