Polarization angle diversity for highly-reliable machine-to-machine radio

Author(s):  
K. Takei
Author(s):  
O. S. Galinina ◽  
S. D. Andreev ◽  
A. M. Tyurlikov

Introduction: Machine-to-machine communication assumes data transmission from various wireless devices and attracts attention of cellular operators. In this regard, it is crucial to recognize and control overload situations when a large number of such devices access the network over a short time interval.Purpose:Analysis of the radio network overload at the initial network entry stage in a machine-to-machine communication system.Results: A system is considered that features multiple smart meters, which may report alarms and autonomously collect energy consumption information. An analytical approach is proposed to study the operation of a large number of devices in such a system as well as model the settings of the random-access protocol in a cellular network and overload control mechanisms with respect to the access success probability, network access latency, and device power consumption. A comparison between the obtained analytical results and simulation data is also offered. 


2013 ◽  
Vol 1 (3) ◽  
pp. 48-65
Author(s):  
Yuting Chen

A concurrent program is intuitively associated with probability: the executions of the program can produce nondeterministic execution program paths due to the interleavings of threads, whereas some paths can always be executed more frequently than the others. An exploration of the probabilities on the execution paths is expected to provide engineers or compilers with support in helping, either at coding phase or at compile time, to optimize some hottest paths. However, it is not easy to take a static analysis of the probabilities on a concurrent program in that the scheduling of threads of a concurrent program usually depends on the operating system and hardware (e.g., processor) on which the program is executed, which may be vary from machine to machine. In this paper the authors propose a platform independent approach, called ProbPP, to analyzing probabilities on the execution paths of the multithreaded programs. The main idea of ProbPP is to calculate the probabilities on the basis of two kinds of probabilities: Primitive Dependent Probabilities (PDPs) representing the control dependent probabilities among the program statements and Thread Execution Probabilities (TEPs) representing the probabilities of threads being scheduled to execute. The authors have also conducted two preliminary experiments to evaluate the effectiveness and performance of ProbPP, and the experimental results show that ProbPP can provide engineers with acceptable accuracy.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Sarika Singh ◽  
Sandeep K. Arya ◽  
Shelly Singla

AbstractA scheme to suppress nonlinear intermodulation distortion in microwave photonic (MWP) link is proposed by using polarizers to compensate inherent non-linear behavior of dual-electrode Mach-Zehnder modulator (DE-MZM). Insertion losses and extinction ratio have also been considered. Simulation results depict that spurious free dynamic range (SFDR) of proposed link reaches to 130.743 dB.Hz2/3. A suppression of 41 dB in third order intermodulation distortions and an improvement of 15.3 dB is reported when compared with the conventional link. In addition, an electrical spectrum at different polarization angles is extracted and 79^\circ is found to be optimum value of polarization angle.


2019 ◽  
Vol 623 ◽  
pp. A56 ◽  
Author(s):  
D. Savić ◽  
F. Marin ◽  
L. Č. Popović

Context. Some Type-1 active galactic nuclei (AGN) show extremely asymmetric Balmer lines with the broad peak redshifted or blueshifted by thousands of km s−1. These AGN may be good candidates for supermassive binary black holes (SMBBHs). The complex line shapes can be due to the complex kinematics of the two broad line regions (BLRs). Therefore other methods should be applied to confirm the SMBBHs. One of them is spectropolarimetry. Aims. We rely on numerical modeling of the polarimetry of binary black holes systems, since polarimetry is highly sensitive to geometry, in order to find the specific influence of supermassive binary black hole (SMBBH) geometry and dynamics on polarized parameters across the broad line profiles. We apply our method to SMBBHs in which both components are assumed to be AGN with distances at the subparsec scale. Methods. We used a Monte Carlo radiative transfer code that simulates the geometry, dynamics, and emission pattern of a binary system where two black holes are getting increasingly close. Each gravitational well is accompanied by its own BLR and the whole system is surrounded by an accretion flow from the distant torus. We examined the emission line deformation and predicted the associated polarization that could be observed. Results. We modeled scattering-induced broad line polarization for various BLR geometries with complex kinematics. We find that the presence of SMBBHs can produce complex polarization angle profiles φ and strongly affect the polarized and unpolarized line profiles. Depending on the phase of the SMBBH, the resulting double-peaked emission lines either show red or blue peak dominance, or both the peaks can have the same intensity. In some cases, the whole line profile appears as a single Gaussian line, hiding the true nature of the source. Conclusions. Our results suggest that future observation with the high resolution spectropolarimetry of optical broad emission lines could play an important role in detecting subparsec SMBBHs.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 367 ◽  
Author(s):  
Pablo Palacios Játiva ◽  
Milton Román Cañizares ◽  
Cesar A. Azurdia-Meza ◽  
David Zabala-Blanco ◽  
Ali Dehghan Firoozabadi ◽  
...  

This paper proposes two solutions based on angle diversity receivers (ADRs) to mitigate inter-cell interference (ICI) in underground mining visible light communication (VLC) systems, one of them is a novel approach. A realistic VLC system based on two underground mining scenarios, termed as mining roadway and mine working face, is developed and modeled. A channel model based on the direct component in line-of-sight (LoS) and reflections of non-line-of-sight (NLoS) links is considered, as well as thermal and shot noises. The design and mathematical models of a pyramid distribution and a new hemi-dodecahedral distribution are addressed in detail. The performances of these approaches, accompanied by signal combining schemes, are evaluated with the baseline of a single photo-diode in reception. Results show that the minimum lighting standards established in both scenarios are met. As expected, the root-mean-square delay spread decreases as the distance between the transmitters and receivers increases. Furthermore, the hemi-dodecahedron ADR in conjunction with the maximum ratio combining (MRC) scheme, presents the best performance in the evaluated VLC system, with a maximum user data rate of 250 Mbps in mining roadway and 120 Mbps in mine working face, received energy per bit/noise power of 32 dB and 23 dB, respectively, when the bit error rate corresponds to 10 − 4 , and finally, values of 120 dB in mining roadway and 118 dB in mine working face for signal-to-interference-plus-noise ratio are observed in a cumulative distribution function.


Sign in / Sign up

Export Citation Format

Share Document