Study on Modeling Simulation of Long-Span Gantry NC Machining Center Structure

Author(s):  
Shubo Xu ◽  
Jie Liu ◽  
Keke Sun ◽  
Peng Liu ◽  
Yuanbin Zhang
Author(s):  
Shao-ying Ren ◽  
Yan-zhong Wang ◽  
Yuan Li

This article presents a method of design, manufacturing, and measuring S-gear. S-gear is a kind of gear whose tooth profile is an S-shaped curve. The sine (cosine) gear, cycloid gear, polynomial gear, and circular arc gear are all S-gears in essence. In the S-gear transmission, the concave surface of one gear and the convex surface of the other gear contact each other. Therefore, the power transmitted by S-gear is much larger than that of the convex-convex-contact involute gear. Some scholars have studied the characteristics of S-gear, but few have explored its manufacturing. In this article, the Numerical Control (NC) machining technology of S-gear is studied in detail for its industrial application. The polynomial curve is used to construct the tooth profile of the S-gear based on the Gear Meshing Theory. The mathematical model of polynomial S-gear is established, by which involute gear can be represented as a special S-gear. The steps of generating NC codes are described. Then, the S-gear sample is processed with an NC machining center. Finally, the sample is measured with a Coordinate Measuring Machine (CMM), and the measurement results show that the accuracy of the S-gear processed by the NC machining center reaches ISO6. This research provides a feasible approach for the design, manufacturing, and measuring of S-gear.


2013 ◽  
Vol 753-755 ◽  
pp. 1365-1368
Author(s):  
Guo Zheng Zhang ◽  
Yuan Zhi Zhou

To solve the problem that fixture planning of the batch valve-body part of car, the NC machining process of the batch valve-body parts based on the normal vector is analyzed in this paper. The different fixture planning of the valve-body part based on the capabilities of three-axis and four-axis and five-axis NC machining center (MC) is discussed. According to the questions that the feature of different machined position holes and faces of valve-body part on three-axis NC machining center, the multi-piece fixture planning and multi-position rotational fixture planning are designed. The results indicate that the proposed fixture planning can improve the machining productivity, which based on cabapility of three-axis NC machining center (MC).


1989 ◽  
Vol 26 (03) ◽  
pp. 202-209
Author(s):  
Mark F. Nittel

This paper describes state-of-the-art manufacture of ship propeller blades with numerically controlled(NC) machining. A brief explanation of the rationale for NC machining is provided, followed by a discussion of the operating experience of a blade machining center over the past six years. Some of the unique considerations involved in the NC programming and machining processes are described along with some of the most common production problems. The factors leading to the company's decision to expand the blade machining center are discussed along with a description of the design and procurement of the new equipment and facilities. Tolerances achieved by NC machining and hand finishing are compared.


2010 ◽  
Vol 135 ◽  
pp. 102-106 ◽  
Author(s):  
Ning Luo ◽  
You Yi Zheng ◽  
Guo Tai Han ◽  
Ke Jiang

The characteristics of surface connection include high fatigue strength, high centering ability, easy dismantling and long life. According to these characteristics and based on the analysis of logarithmic spiral equation, the article explores a new technique of the matched logarithmic spiral profile connection to facilitate efficiently by formulating the machining process and analysing the part technology to determine the geometric modeling, tool path and simulation of NC machining graph and to inspect the process of Logarithmic spiral axes CNC Machining Center and CMM.


2014 ◽  
Vol 509 ◽  
pp. 75-79 ◽  
Author(s):  
Yan Wu ◽  
Keng Zhou ◽  
Gang Zheng ◽  
Er Geng Zhang

This paper studies the five-axis NC machining simulation process for four-blade propeller. Three-dimensional solid model of four-blade propeller is created based on UG, and then the tool path is generated using its CAM module, and finally the machining simulation is implemented on FIDIA five-axis machining center based on VERICUT. The correctness of NC machining process is verified. The method of the virtual simulation is also suitable for similar parts machining.


2014 ◽  
Vol 608-609 ◽  
pp. 77-80
Author(s):  
Li Mei Wang

Based on NC machining principle of hypoid gears and NC machining with high efficiency quality, This paper discusses the feasibility of the hypoid gear processing, establishes the mathematical model of face gear wheel hypoid milling machining adjustment, that will be take the basic data into vertical machining center machine tool. Through analyze the principle of the oscillating tooth face gear transmission, and compared the structure differences between face gear and bevel gear, and the realization processing method of face gear is discussed by improving the bevel gear shaper.


2014 ◽  
Vol 539 ◽  
pp. 34-37
Author(s):  
Xiu Rong Zhu

Based on NC machining principle of hypoid gears and NC machining with high efficiency quality, This paper discusses the feasibility of the hypoid gear processing, establishes the mathematical model of face gear wheel hypoid milling machining adjustment, that will be take the basic data into vertical machining center machine tool, tool, fixture, the installation and adjustment of parameters, and we write a program of the CNC machining and corresponding code, combined with the specific wheel blank parameters to milling simulation test and milling tests, we obtain a new process methods.


Sign in / Sign up

Export Citation Format

Share Document