Study of the Effects of Magnetic Pole Arrangement on Braking Torque of Eddy Current Brakes

Author(s):  
Kentaro Hori ◽  
Daichi Mochizuki ◽  
Yosimi Kikuchi ◽  
Hiroyuki Wakiwaka ◽  
Makoto Sonehara ◽  
...  
2018 ◽  
Vol 30 (2) ◽  
pp. 256-271 ◽  
Author(s):  
Hui Huang ◽  
Shumei Chen ◽  
Cheng Wang

In this article, a new high-torque retarder combining the effects of magnetorheological fluid and eddy current is researched. The new retarder provides a part of the braking torque generated by the shear stress of the magnetorheological fluid and an additional braking torque generated by the effect of the eddy current on the rotors. This operating concept is realized by a common magnetic excitation circuit generated by a new structure with several separated coils. The configurations and design details of the new retarder, including the structure, material selection, and magnetic circuit, are discussed. The mathematical models of braking torque caused by the magnetorheological fluid and eddy current are also derived. Then, a finite element analysis is performed to verify the magnetic field design of the new retarder. Finally, a prototype is fabricated, and the relevant parameters are tested. The experimental result shows that the new retarder provides not only a stable braking torque at low speed but also a great increment of braking torque varied with rotation speed, which effectively improves the total braking torque compared with conventional magnetorheological retarders.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1561
Author(s):  
Hery Tri Waloyo ◽  
U Ubaidillah ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Muhammad Nizam ◽  
Muhammad Aziz

The braking torque mathematical modelling in electromagnetic eddy current brake (ECB) often ignores the skin effect that occurrs during operation. However this phenomenon can not be simply neglected. Therefore, this paper presents a mathematical model of braking torque for a unipolar axial type of ECB system with a non-magnetic disk, which considers the skin effects. The use of mathematical models that consider the existence of skin effects is significant in approaching the braking torque according to the actual condition. The utilization of generic calculations to the model of the ECB braking torque leads to invalid results. Hence, in this paper, the correction factor was added to improve the braking torque calculation as a comparator to the proposed equation. However, the modification and addition of the correction factor were only valid to estimate the low-speed regimes of torque, but very distant for the high-speed condition. From the comparison of calculated values using analytical and 3D modelling, the amount of braking torque at a low speed was found to have an average error for the equation using a correction factor of 1.78 Nm, while after repairing, a value of 1.16 Nm was obtained. For the overall speed, an average error of 14.63 Nm was achieved, while the proposed equation had a small difference of 1.79 Nm. The torque difference from the calculation results of the proposed model with the measurement value in the experiment was 4.9%. Therefore, it can be concluded that the proposed equation provided a better braking torque value approach for both low and high speeds.


2014 ◽  
Vol 592-594 ◽  
pp. 1089-1093 ◽  
Author(s):  
G.L. Anantha Krishna ◽  
K.M. Sathish Kumar

The changing magnetic field will induce eddy currents in the conductor. These currents will dissipate energy in the conductor and generate drag force. It is found that Aluminium is the best material as conductor compared to Copper and Zinc. Also, it is found that the larger thickness of disc, more number of turns of electromagnet and higher electrical conductivity of conductor influences the generation of greater braking torque. Conventional braking system relies on adhesion force between rail and wheel. It is found that a brake built up from permanent magnet pieces that combine both magnetic rail brake and eddy current brake permits the most profitable braking action through the whole range of acceptable speeds. Permanent magnet eddy current brake uses Neodymium - Iron - Boron (NdFeB) magnets. The analysis of permanent magnet eddy current shows that the parallel magnetised eddy current topology has the superior braking torque capability. In electrically controlled eddy current braking system subjected to time varying fields in different wave forms, the triangular wave field application resulted in highest braking torque. Electromagnetic brakes were found to interfere with the signalling and train control system. Permanent magnet eddy current brakes are a simple and reliable alternative to mechanical or electromagnetic brakes in transportation applications. Greater the speed greater is the eddy current braking efficiency. Hence, author intends to work on the development and investigation of permanent magnet eddy current braking system.


2013 ◽  
Vol 765-767 ◽  
pp. 234-237
Author(s):  
Pei Tang ◽  
Ji Sheng Xia

This paper introduces the structure of the single rotor eddy current retarder. The formula of braking torque with single rotor eddy current retarder was deduced by the appliance of the theory about source and field. The design method of single rotor eddy current retarder was put forward . The bench test was carried out, and the test shows that the braking torque of single rotor eddy current retarder can meet the requirement of real car.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6633
Author(s):  
Huiseop Jeong ◽  
Hoseong Ji ◽  
Sanghyun Choi ◽  
Joonho Baek

The design and application of eddy current brakes (ECBs) should be simple; further, ECBs should be used semi-permanently. This study aimed to determine major parameters for designing an ECB that can be applied to a small-scale wind turbine generator. To this end, an ECB was developed that could actuate without additional power, thus improving the efficiency of the generator. A series of simulations were conducted for a parametric study to pre-design ECBs suitable for small wind turbines. The six parameters chosen were disk thickness, number of magnets, radial location of magnets from center of disk, magnet pole arrangement, magnetic flux density, and rotational speed. The simulations were conducted on COMSOL Multiphysics. The results indicated that the number of magnets and magnet pole arrangements can significantly affect the performance curve of ECBs. Moreover, the disk thickness and rotational speed are linearly proportional to the braking torque.


2008 ◽  
Vol 128 (6) ◽  
pp. 379-385
Author(s):  
Takeshi Takanashi ◽  
Yusuke Ohtsuka ◽  
Yoshio Ueda ◽  
Masahiro Nishikawa

2012 ◽  
Vol 251 ◽  
pp. 134-138 ◽  
Author(s):  
Cheng Ye Liu ◽  
Jian Ming Shen

Auxiliary brake sets had been widely used for heavy duty trucks and advanced buses. They played a role of split-flow braking load of main brake system. As one of auxiliary brake sets eddy current retarder had good braking performance and braking stability, and it is automotive and maintain constant speed by its continual braking. In this paper, key technologies of eddy current retarder, such as braking torque, working volt and current, magnetic circuit, material of rotor plate and iron, heat dissipation performance of rotor plate, match between eddy current retarded and automobile, and effect of temperature rise on its braking performance were presented and discussed in detail. Meanwhile, advantage and disadvantage of eddy current retarder were analyzed.


Sign in / Sign up

Export Citation Format

Share Document