Properties of concrete with partial replacement of steel slag with fine aggregate

Author(s):  
R Dineshkumar ◽  
S Suchithra
10.29007/jxp9 ◽  
2018 ◽  
Author(s):  
Shashi Kant Sharma ◽  
Aniruddha Chopadekar ◽  
Samarth Bhatia

Slurry infiltrated fibrous concrete (SIFCON) is a new and unique type of high performance concrete invented by Lankard in 1979, containing high percentage of fiber about 6% to 20% by volume. SIFCON possesses high strength as well as large ductility and has excellent potential for structural application. The matrix in SIFCON has no coarse aggregate but high cementitious content. The aim of study is to evaluate the performance of SIFCON mortar with lower fiber percentage and to minimize the fine aggregate usage by replacing it with industrial waste i.e. steel slag. Thereby, it also helps in effective disposal of industrial waste and helps in mitigating environmental pollution. The main objective of this study is to determine the effect of partial replacement of sand with steel slag on the mechanical properties of SIFCON mortar. The experimental program was carried out with 2%, 3% and 4% of fiber content by volume combined with replacement of sand by steel slag in proportion of 10% and 20% by weight. For this purpose, compressive strength, flexural strength, split tension and impact strength of SIFCON specimens were tested after 7 and 28 days of curing, yielding positive results.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 235
Author(s):  
Cherukuru Surendra ◽  
Karthik S ◽  
Saravana Raja Mohan K

The cement industry is responsible for about 6% of all CO2 emissions in the environment and numerous waste products out from the industries which is generating a lots of dumping problems and global warming. The main aim of this present study is to experimentally study the influence of partial replacement of cement with fly ash (FA) and partial replacement of fine aggregate with iron slag (IS) on the mechanical properties of concrete. Totally 10 mixes were prepared with 10, 20 and 30% replacements level of cement with fly ash and fine aggregate is replaced with 10, 20 and 30% by steel slag. The compressive and splitting tensile strength tests were found out after 7, 14, 28 and 7, 28 days age of curing for all the mixes respectively. Results were compared with conventional concrete and the optimum replacement percentage of FA and IS has reported.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 348
Author(s):  
K K.Siddhartha ◽  
P Bhuvaneshwari ◽  
Saravana Raja Mohan.K

The objective of this study is to experimentally study the effect of partial replacement of Portland cement and fine aggregate by the industrial wastes ground granulated blast furnace slag (GGBS) and steel slag (SS) respectively, on the various strength parameters of concrete. Totally 9 mixes were proposed according to ACI standards, with varying replacements of cement with 40%, 50% and 60% of GGBS and varying replacement of fine aggregate with steel slag by 10%, 20% and 30% weight of concrete. The compressive strength using cubes of size 100 mm x 100 mm x 100 mm and splitting tensile strength using cylinder of size 100 mm x 200 mm were found out for curing periods of 14 and 28 days respectively for all the mixes. Results were then compared with conventional concrete and the optimum replacement percentage of GGBS and steel slag is reported.  


2019 ◽  
Vol 10 (3) ◽  
pp. 253-258
Author(s):  
S. Jagan

Sustainability and scarcity in resources are the two major issues to be dealt within the present scenario by effective utilization of alternative materials. In this present study, an attempt has been taken to study the effect of supplementary materials such as fly ash and silica fume as a partial replacement to cement and steel slag and M-sand as a replacement to river sand on strength and durability of concrete. In this study, concrete specimens were prepared based on five different mixes by varying the percentages of these supplementary materials. Various mechanical properties like compressive strength, split tensile strength and flexural strength were performed to ascertain the mix with optimum levels of replacement of supplementary materials for cement and fine aggregate. Durability property like water absorption test was performed on the mix with optimum values of strength. Results revealed that mix with higher percentages of steel slag, optimum level of silica fume and fly ash have shown higher strength and lesser permeability in concrete.


Sign in / Sign up

Export Citation Format

Share Document