scholarly journals Effect on blending of supplementary cementitious materials on performance of normal strength concrete

2019 ◽  
Vol 10 (3) ◽  
pp. 253-258
Author(s):  
S. Jagan

Sustainability and scarcity in resources are the two major issues to be dealt within the present scenario by effective utilization of alternative materials. In this present study, an attempt has been taken to study the effect of supplementary materials such as fly ash and silica fume as a partial replacement to cement and steel slag and M-sand as a replacement to river sand on strength and durability of concrete. In this study, concrete specimens were prepared based on five different mixes by varying the percentages of these supplementary materials. Various mechanical properties like compressive strength, split tensile strength and flexural strength were performed to ascertain the mix with optimum levels of replacement of supplementary materials for cement and fine aggregate. Durability property like water absorption test was performed on the mix with optimum values of strength. Results revealed that mix with higher percentages of steel slag, optimum level of silica fume and fly ash have shown higher strength and lesser permeability in concrete.

Carbonation is one of the imperative properties that affect the durability of concrete especially in case of reinforced structures. In this present study, an attempt has been taken to study the effect of M sand and other supplementary cementitious materials like silica fume, fly ash and steel slag as a partial replacement to cement. Different combinations with M sand, river sand and combinations of M sand and river sand with supplementary cementitious materials at water to cement ratio varying from 0.45 to 0.5 was studied. Results revealed that the complete replacement of river sand by M sand reduced the rate of carbonation but addition of supplementary cementitious along with either river sand or M sand resulted in increase over the rate of carbonation compared to conventional concrete.


2021 ◽  
Vol 30 (1) ◽  
pp. 130-143
Author(s):  
Eethar Thanon Dawood ◽  
Mafaz Hani Abdullah

Abstract The use of supplementary cementitious materials like crushed glass, steel slag, and silica fume at an acceptable level has resulted in many advantages such as reduction of the waste solid materials and production of eco-friendly material. Moreover, the inclusion of fibers for reinforcing cementitious matrix can improve its properties overall. Therefore, this research has been divided into two phases. The first phase has included the production of green reactive powder mortar and the investigation of its properties. The second phase has involved the incorporation of the micro steel fibers to green reactive powder mortar with different amounts. The results have indicated that the use of the crushed glass, steel slag, and silica fume by 8, 12, and 10% as a partial replacement of cement with suitable chemical admixture gives a great reduction of cement by 30% from the total cementitious amount used in reactive powder mortar and greater values of strengths for reactive powder mortar. The addition of micro steel fibers by 1, 1.5, 2, and 2.5% improves the dry bulk density, ultrasonic pulse velocity, compressive strength, flexural strength, and tensile strength of green mortar. The best increase has been observed at green reactive powder mortar (GRPC) containing 2 % of micro steel fibers.


Author(s):  
Leela Prasanth U ◽  
Karan Kumar H ◽  
Afzal Basha Syed

Concrete is a compound material composed of fine aggregates and coarse aggregate bonded together with fluid cement that hardens over time.The deficit of natural sand arises the need of alternative materials for replacement of natural sand. The squashed stone residue which is locally accessible modern strong waste material is ordinarily utilized as a fine aggregate in concrete. In the current examination, an exploratory program was carried out to consider the compressive and split tensile quality of concrete made utilizing stone residue as halfway substitution of fine aggregate at an increment of 10%. Zeolite is a pozzolanic material and its pozzolanic action improves the compressivestrength of concrete. Natural zeolites are supplementary cementitious materials. By adding zeolite, the investigation on the experiments will be carried out to determine the compressive strength and split tensile strength of concrete made using zeolite as partial replacement of cement up to 20 percent at an interval of 5 percent just as the way Stone dust is being replaced to achieve the objective of the project, M30 grade of concrete is prepared. The cube and cylindrical samples shall be tested after a curing period of 7 & 28 days.


Eco sand is a very fine particle, which is a by-product from the cement manufacturing industry by semi-wet process and it can be a good alternative for natural river sand. Due to its very finely powdered crystalline silica particles present in that which can replace up to 50% of conventional sand usage in concrete and mortars. It can be used in the concrete by replacement of fine aggregates by a certain percentage which gives much more efficiency. In this paper, the hardened properties like cube compressive strength, cylinder split tensile strength, and prism flexural strength are studied with various replacements cement with fly ash like 0 % and 30% and sand with eco sand-like 0%,30%,40%,50% and 60%. The results are compared with conventional concrete specimens. Experimental results also show that the hardened properties of concrete are increased by a certain amount when compared with the normal placed concrete specimens. During the study Due to replacement of fine aggregate with eco sand for workability conditions by some amount of chemical admixtures have been added


Author(s):  
Aishwarya Dupaki

Abstract: This paper gives a review on self compacting concrete(SCC) to be made as partial replacing of cement by fly ash and metakaolin and partial replacing of fine aggregate with copper slag. Day by day production of concrete is increasing due to requirement of concrete is increasing with sufficient mechanical and durable properties in construction industry. Self compacting concrete is the special concrete which has ability of passing and filling of every corner of the congested area. So many researches are going on to increase mechanical and durable properties of SCC. Due to shortage of natural aggregates, researches are going on to use by-products or waste material as fine aggregate. Copper slag is a by-product produced during the process of production of copper. To achieve good mechanical and durable properties of self-compacting concrete cementitious material places an important role. Metakaolin and fly ash are used as the partial replacement of cement. In this paper an overview on the literature on mechanical behaviour of self-compacting concrete with partial replacement of cement by fly ash and metakaolin and partial replacement of fine aggregate with copper slag. Keywords: self compacting concrete, copper slag, fly ash, metakaolin, mechanical properties, durability


2021 ◽  
Vol 1200 (1) ◽  
pp. 012004
Author(s):  
M R Md Zain ◽  
C L Oh ◽  
L S Wee

Abstract Engineered cementitious composites (ECC) mixtures demand a large cement content, which is detrimental to their sustainable development because mass cement production is hazardous to the environment and human health. Thus, this paper investigates the mechanical performance of eco engineered cementitious composites (ECC) under axial compressive loading and direct tensile strength tests. The eco ECC used in this investigation was comprised of cement, superplasticizer, fly ash (FA) or ground granulated blast furnace slag (GGBS), polypropylene (PP) fibre, water and recycled concrete fines (RCF). Two (2) eco ECC mixture series were designed and prepared. GGBS70 (70 percent GGBS + 30 percent cement), FA70 (70 percent Fly Ash + 30 percent cement), GGBS80 (80 percent GGBS + 20 percent cement), and FA80 (80 percent Fly Ash + 20 percent cement) are the four Cement-GGBS and Cement-Fly Ash combinations examined in this study. Also every combination had two different RCF percentages, R0.2 (0.2 percent RCF) and R0.4 (0.4 percent RCF). The main objective of this research is to determine the optimum mix design for eco ECC that contains supplementary Cementitious Materials (SCMs) such as GGBS or FA. Additionally, recycled concrete fines (RCF) were used as a substitute for sand. The influence of different cement replacement materials and RCF content on compressive and tensile strength was experimentally investigated. The inclusion of GGBS as a partial replacement of cement in the eco concrete mixture results in greater compressive strength than Fly Ash (FA). The test results revealed that increasing the RCF content in the ECC mixture resulted in higher compressive and tensile strength. When the sand to binder ratio was adjusted between 0.2 and 0.4, the compressive and tensile strength of the ECC mixture increased.


2018 ◽  
Vol 7 (4) ◽  
pp. 2051
Author(s):  
S Suganya ◽  
V Rajkumar

Concrete incorporates large amount of natural resource as aggregates with cement and water. Cement production consumes huge energy and causes about 7% of total greenhouse gas emission in the world. It has been strived to provide better quality in concrete using waste by-products from industries so that natural resources are used in an efficient manner and thereby the environment is protected from waste deposits. Hence, mineral admixtures like fly ash and micro silica can be used to overcome these issues. The demand for river sand is getting increased day by day, which affects its constant supply. Under these circumstances use of quarry dust becomes inevitable. The usage of fly ash in the concrete leads to strength gain only at later stages. In order to obtain strength during the early stage, micro silica is added as a partial replacement of cement. The properties of fly ash, micro silica and quarry dust were studied. Fly ash (0-40%) and micro silica (0-15%) are used as a partial replacement for cement and quarry dust (50%) as that for river sand by mass. Mechanical properties of the concrete containing hybrid mineral admixtures and quarry dust are studied systematically.  


2019 ◽  
Vol 292 ◽  
pp. 102-107 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Karel Šeps ◽  
Roman Chylík ◽  
Vladimír Hrbek

High-performance concrete is a very specific type of concrete. Its production is sensitive to both the quality of compounds used and the order of addition of particular compounds during the homogenization process. The mechanical properties were observed for four dosing procedures of each of the three tested concrete mixtures. The four dosing procedures were identical for the three mixes. The three mixes varied only in the type of supplementary cementitious material used and in water content. The water content difference was caused by variable k-value of particular additives. The water-to-binder ratio was kept constant for all the concretes. The additives used were metakaolin, fly ash and microsilica. The comparison of particular dosing procedures was carried out on the values of basic mechanical properties of concrete. The paper compares compressive strength and depth of penetration of water under pressure. Besides the comparsion of macro-mechanical properties, the effect of microsilica and fly ash additives on micro-mechanical properties was observed with the use of scanning electron microscopy (SEM) and nanoindentation data analysis. Nanoindentation was used to determine the thickness and strength of interfacial transition zone (ITZ) for different sequence of addition of cement, additive and aggregate. The thickness obtained by nanoindentation was further investigated by SEM EDS line scanning.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 446
Author(s):  
L Krishnaraj ◽  
P T. Ravichandran ◽  
M V.A.Karthik ◽  
N Satheeshram Avudaiyappan ◽  
. .

The life of the concrete is strongly influenced by durability parameters. The permeability is one of the main characteristics influencing the durability of concrete. The concrete is more permeable due to the ingress of water, oxygen, chloride, sulphate, and other potential deleterious substances. The durability of concrete is mainly affected by pore structure system of concrete and addingthe supplementary cementitious materials (SCM), such as fly ash, slag cement, and silica fume can be decrease permeability. Crystalline technology enhances the strength of concrete by filling the poresand micro-cracks with non-dissolvable substances. To study the efficiency of crystalline formation in concrete in terms of more permeable should be guaranteed through a specific technique.The effectiveness of crystalline waterproofing system with partial replacement cement by GGBS is studiedin terms of strength and durability. The performance of the two different types of crystalline waterproofing integral admixtures has been studied for compressive strength, Split tensile strength, workability, water permeability, Rapid chloride permeability test and porosity in this paper.The early strength increased in GGBS with crystalline admixture concretes compare to the control concrete. No significant strength reduction is observed in GGBS concretes with crystalline admixture when replaced with 20% and 40% of cement than control concrete.  


2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


Sign in / Sign up

Export Citation Format

Share Document