Design constraints of high performance chopping signal conditioning circuits for integrated sensors

Author(s):  
Parisa Vejdani ◽  
Anoir Bouchami ◽  
Frederic Nabki
Author(s):  
Mehdi Modarressi ◽  
Hamid Sarbazi-Azad

In this chapter, we present a reconfigurable architecture for network-on-chips (NoC) on which arbitrary application-specific topologies can be implemented. The proposed NoC can dynamically tailor its topology to the traffic pattern of different applications, aiming to address one of the main drawbacks of existing application-specific NoC optimization methods, i.e. optimizing NoCs based on the traffic pattern of a single application. Supporting multiple applications is a critical feature of an NoC as several different applications are integrated into the modern and complex multi-core system-on-chips and chip multiprocessors and an NoC that is designed to run exactly one application does not necessarily meet the design constraints of other applications. The proposed NoC supports multiple applications by configuring as a topology which matches the traffic pattern of the currently running application in the best way. In this chapter, we first introduce the proposed reconfigurable topology and then address the two problems of core to network mapping and topology exploration. Experimental results show that this architecture effectively improves the performance of NoCs and reduces power consumption.


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 94 ◽  
Author(s):  
Yanqiao Pan ◽  
Liangcai Zeng

Droplet generation process can directly affect process regulation and output performance of electrohydrodynamic jet (E-jet) printing in fabricating micro-to-nano scale functional structures. This paper proposes a numerical simulation model for whole process of droplet generation of E-jet printing based on the Taylor-Melcher leaky-dielectric model. The whole process of droplet generation is successfully simulated in one whole cycle, including Taylor cone generation, jet onset, jet break, and jet retraction. The feasibility and accuracy of the numerical simulation model is validated by a 30G stainless nozzle with inner diameter ~160 μm by E-jet printing experiments. Comparing numerical simulations and experimental results, period, velocity magnitude, four steps in an injection cycle, and shape of jet in each step are in good agreement. Further simulations are performed to reveal three design constraints against applied voltage, flow rate, and nozzle diameter, respectively. The established cone-jet numerical simulation model paves the way to investigate influences of process parameters and guide design of printheads for E-jet printing system with high performance in the future.


2004 ◽  
Vol 48 (04) ◽  
pp. 273-287
Author(s):  
Y. Tahara ◽  
F. Stern ◽  
Y. Himeno

Computational fluid dynamics (CFD)-based optimization of a surface combatant is presented with the following main objectives:development of a high-performance optimization module for a Reynolds averaged Navier-Stokes (RANS) solver for with-free-surface condition; anddemonstration of the capability of the optimization method for flow- and wave-field optimization of the Model 5415 hull form. The optimization module is based on extension of successive quadratic programming (SQP) for higher-performance optimization method by introduction of parallel computing architecture, that is, message passing interface (MPI) protocol. It is shown that the present parallel SQP module is nearly m(= 2k+ 1; k is number of design parameters) times faster than conventional SQP, and the computational speed does not depend on the number of design parameters. The RANS solver is CFDSHIP-IOWA, a general-purpose parallel multiblock RANS code based on higher-order upwind finite difference and a projection method for velocity-pressure coupling; it offers the capability of free-surface flow calculation. The focus of the present study is on code development and demonstration of capability, which justifies use of a relatively simple turbulence model, a free-surface model without breaking model, static sinkage and trim, and simplified design constraints and geometry modeling. An overview is given of the high-performance optimization method and CFDSHIP-IOWA, and results are presented for stern optimization for minimization of transom wave field disturbance; sonar dome optimization for minimization of sonar-dome vortices; and bow optimization for minimization of bow wave. In conclusion, the present work has successfully demonstrated the capability of the CFD-based optimization method for flow- and wave-field optimization of the Model 5415 hull form. The present method is very promising and warrants further investigations for computer-aided design (CAD)-based hull form modification methods and more appropriate design constraints.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Sign in / Sign up

Export Citation Format

Share Document