Computation of Stabilizing Decentralized PI Controllers for TITO Systems with Simplified and Inverted Decoupling

Author(s):  
Miray Gunay Bulut ◽  
Furkan Nur Deniz
Keyword(s):  
2015 ◽  
Vol 203 (4) ◽  
pp. 527-538 ◽  
Author(s):  
Chandra Shekar Besta ◽  
Manickam Chidambaram
Keyword(s):  

2016 ◽  
Vol 59 (4) ◽  
pp. 259-279 ◽  
Author(s):  
Chandra Shekar Besta ◽  
Manickam Chidambaram

2020 ◽  
Vol 39 (3) ◽  
pp. 4319-4329
Author(s):  
Haibo Zhou ◽  
Chaolong Zhang ◽  
Shuaixia Tan ◽  
Yu Dai ◽  
Ji’an Duan ◽  
...  

The fuzzy operator is one of the most important elements affecting the control performance of interval type-2 (IT2) fuzzy proportional-integral (PI) controllers. At present, the most popular fuzzy operators are product fuzzy operator and min() operator. However, the influence of these two different types of fuzzy operators on the IT2 fuzzy PI controllers is not clear. In this research, by studying the derived analytical structure of an IT2 fuzzy PI controller using typical configurations, it is proved mathematically that the variable gains, i.e., proportional and integral gains of typical IT2 fuzzy PI controllers using the min() operator are smaller than those using the product operator. Moreover, the study highlights that unlike the controllers based on the product operator, the controllers based on the min() operator have a simple analytical structure but provide more control laws. Real-time control experiments on a linear motor validate the theoretical results.


2000 ◽  
Vol 33 (13) ◽  
pp. 49-54
Author(s):  
Pasi Airikka ◽  
Pentti Lautala
Keyword(s):  

2020 ◽  
pp. 0309524X2098177
Author(s):  
Mohamed Metwally Mahmoud ◽  
Hossam S Salama ◽  
Mohamed M Aly ◽  
Abdel-Moamen M Abdel-Rahim

Fault ride-through (FRT) capability enhancement for the growth of renewable energy generators has become a crucial issue for their incorporation into the electricity grid to provide secure, reliable, and efficient electricity. This paper presents a new FRT capability scheme for a permanent magnet synchronous generator (PMSG)-based wind energy generation system using a hybrid solution. The hybrid solution is a combination of a braking chopper (BC) and a fuzzy logic controller (FLC). All proportional-integral (PI) controllers which control the generator and grid side converters are replaced with FLC. Moreover, a BC system is connected to the dc link to improve the dynamic response of the PMSG during fault conditions. The PMSG was evaluated on a three-phase fault that occurs on an electrical network in three scenarios. In the first two scenarios, a BC is used with a PI controller and FLC respectively. While the third scenario uses only FLC without a BC. The obtained results showed that the suggested solution can not only enhance the FRT capability of the PMSG but also can diminish the occurrence of hardware systems and reduce their impact on the PMSG system. The simulation tests are performed using MATLAB/SIMULINK software.


2021 ◽  
Vol 13 (11) ◽  
pp. 6388
Author(s):  
Karim M. El-Sharawy ◽  
Hatem Y. Diab ◽  
Mahmoud O. Abdelsalam ◽  
Mostafa I. Marei

This article presents a control strategy that enables both islanded and grid-tied operations of a three-phase inverter in distributed generation. This distributed generation (DG) is based on a dramatically evolved direct current (DC) source. A unified control strategy is introduced to operate the interface in either the isolated or grid-connected modes. The proposed control system is based on the instantaneous tracking of the active power flow in order to achieve current control in the grid-connected mode and retain the stability of the frequency using phase-locked loop (PLL) circuits at the point of common coupling (PCC), in addition to managing the reactive power supplied to the grid. On the other side, the proposed control system is also based on the instantaneous tracking of the voltage to achieve the voltage control in the standalone mode and retain the stability of the frequency by using another circuit including a special equation (wt = 2πft, f = 50 Hz). This utilization provides the ability to obtain voltage stability across the critical load. One benefit of the proposed control strategy is that the design of the controller remains unconverted for other operating conditions. The simulation results are added to evaluate the performance of the proposed control technology using a different method; the first method used basic proportional integration (PI) controllers, and the second method used adaptive proportional integration (PI) controllers, i.e., an Artificial Neural Network (ANN).


Author(s):  
Yuriy Romasevych ◽  
Viatcheslav Loveikin ◽  
Alla Dudnyk ◽  
Yuriy Loveikin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document