A cost effective method for temperature measurement in HV system using fiber optic cable

Author(s):  
S. Gupta ◽  
N. Vaghela ◽  
K. Kalaria
2015 ◽  
Vol 49 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Ron Cramer ◽  
David Shaw ◽  
Robert Tulalian ◽  
Pabs Angelo ◽  
Maarten van Stuijvenberg

AbstractTimely pipeline leak detection is a significant business issue in view of a long history of catastrophic incidents and growing intolerance for such events. It is vital to flag containment loss and location quickly, credibly, and reliably for all green or brown field critical lines in order to shut down the line safely and isolate the leak. Pipelines are designed to transport hydrocarbons safely; however, leaks have severe safety, economic, environmental, and reputational effects. This paper will highlight robust, reliable, and cost-effective methods, most of which leverage real-time instrumentation, telecommunications, SCADA, DCS, and associated online leak detection applications. The purpose of this paper will be to review the underlying leak detection business issues, catalogue the functional challenges, and describe experiences with available technologies. Internal and external techniques will be described, including basic rate of change of flow and pressure, compensated mass balance, statistical, real-time transient modeling, acoustic wave sensing, fiber optic cable (distributed temperature, distributed acoustic sensing), and subsea hydrophones. The paper will also describe related credibility, deployment, organizational, and maintenance issues with an emphasis on upstream applications. The scope will include leak detection for pipelines conveying various flowing fluids—gas, liquid, and multiphase flow. Pipeline environments will include subsea and onshore. Advantages, disadvantages, and experiences with these techniques will be described and analyzed.


2013 ◽  
Vol 860-863 ◽  
pp. 1388-1393
Author(s):  
Guo Chang Zhao ◽  
Xian Yi Tong ◽  
Li Ping Song ◽  
Chun Lei Zhao ◽  
Guang Chao Li ◽  
...  

Accurate temperature measurement needs in both research and industry have become more demanding and traditional temperature measurement technologies are struggling to keep up. Optical fiber thermometers have many unique advantages and are an option with much potential in the area of high temperature measurement. Research shows that fiber optic temperature sensors are capable of making accurate and precise measurements in a wide range of harsh conditions where other measurement technologies cannot and are a cost effective option in situations where traditional measurement technologies are currently used. Several typical high temperature fiber optic sensors are discussed in detail, focusing on the principle of operation, advantageous characteristics, and recent research developments, with the aim of aiding in further work with fiber optic thermometers.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


2019 ◽  
Vol 6 (1) ◽  
pp. 48-50
Author(s):  
Ikram Uddin

This study will explain the impact of China-Pak Economic Corridor (CPEC) on logistic system of China and Pakistan. This project is estimated investment of US $90 billion, CPEC project is consists of various sub-projects including energy, road, railway and fiber optic cable but major portion will be spent on energy. This project will start from Kashgar port of china to Gwadar port of Pakistan. Transportation is sub-function of logistic that consists of 44% total cost of logistic system and 20% total cost of production of manufacturing and mainly shipping cost and transit/delivery time are critical for logistic system. According to OEC (The Observing Economic Complexity) currently, china is importing crude oil which 13.4% from Persian Gulf. CPEC will china for lead time that will be reduced from 45 days to 10 days and distance from 2500km to 1300km. This new route will help to china for less transit/deliver time and shipping cost in terms of logistic of china. Pakistan’s transportation will also improve through road, railway and fiber optic cabal projects from Karachi-Peshawar it will have speed 160km per hour and with help of pipeline between Gwadar to Nawabshah gas will be transported from Iran. According to (www.cpec.inf.com) Pakistan logistic industry will grow by US $30.77 billion in the end of 2020.


Author(s):  
I. Juwiler ◽  
I. Bronfman ◽  
N. Blaunstein

Introduction: This article is based on the recent research work in the field of two subjects: signal data parameters in fiber optic communication links, and dispersive properties of optical signals caused by non-homogeneous material phenomena and multimode propagation of optical signals in such kinds of wired links.Purpose: Studying multimode dispersion by analyzing the propagation of guiding optical waves along a fiber optic cable with various refractive index profiles of the inner optical cable (core) relative to the outer cladding, as well as dispersion properties of a fiber optic cable due to inhomogeneous nature of the cladding along the cable, for two types of signal code sequences transmitted via the cable: return-to-zero and non-return-to-zero ones.Methods: Dispersion properties of multimode propagation inside a fiber optic cable are analyzed with an advanced 3D model of optical wave propagation in a given guiding structure. The effects of multimodal dispersion and material dispersion causing the optical signal delay spread along the cable were investigated analytically and numerically.Results: Time dispersion properties were obtained and graphically illustrated for two kinds of fiber optic structures with different refractive index profiles. The dispersion was caused by multimode (e.g. multi-ray) propagation and by the inhomogeneous nature of the material along the cable. Their effect on the capacity and spectral efficiency of a data signal stream passing through such a guiding optical structure is illustrated for arbitrary refractive indices of the inner (core) and outer (cladding) elements of the optical cable. A new methodology is introduced for finding and evaluating the effects of time dispersion of optical signals propagating in fiber optic structures of various kinds. An algorithm is proposed for estimating the spectral efficiency loss measured in bits per second per Hertz per each kilometer along the cable, for arbitrary presentation of the code signals in the data stream, non-return-to zero or return-to-zero ones. All practical tests are illustrated by MATLAB utility.


1996 ◽  
Vol 33 (8) ◽  
pp. 23-29 ◽  
Author(s):  
I. Dor ◽  
N. Ben-Yosef

About one hundred and fifty wastewater reservoirs store effluents for irrigation in Israel. Effluent qualities differ according to the inflowing wastewater quality, the degree of pretreatment and the operational parameters. Certain aspects of water quality like concentration of organic matter, suspended solids and chlorophyll are significantly correlated with the water column transparency and colour. Accordingly optical images of the reservoirs obtained from the SPOT satellite demonstrate pronounced differences correlated with the water quality. The analysis of satellite multispectral images is based on a theoretical model. The model calculates, using the radiation transfer equation, the volume reflectance of the water body. Satellite images of 99 reservoirs were analyzed in the chromacity space in order to classify them according to water quality. Principal Component Analysis backed by the theoretical model increases the method sensitivity. Further elaboration of this approach will lead to the establishment of a time and cost effective method for the routine monitoring of these hypertrophic wastewater reservoirs.


2013 ◽  
Vol 10 (3) ◽  
pp. 159-163 ◽  
Author(s):  
Jun Peng ◽  
Yue Feng ◽  
Zhu Tao ◽  
Yingjie Chen ◽  
Xiangnan Hu

Sign in / Sign up

Export Citation Format

Share Document