Application of GPR surface reflection method for estimating soil water content of bare soil

Author(s):  
Gao Shengguo ◽  
Zhu Zhongli ◽  
Jiao Qishun ◽  
Du Fan
2005 ◽  
Vol 60 (5) ◽  
pp. 1013-1016
Author(s):  
Reiji KIMURA ◽  
Yuanbo LIU ◽  
Naru TAKAYAMA ◽  
Makio KAMICHIKA ◽  
Nobuhiro MATSUOKA ◽  
...  

1991 ◽  
Vol 27 (6) ◽  
pp. 1271-1279 ◽  
Author(s):  
Randall J. Charbeneau ◽  
Robert G. Asgian

1999 ◽  
Vol 56 (4 suppl) ◽  
pp. 1215-1221 ◽  
Author(s):  
Durval Dourado-Neto ◽  
Luís Carlos Timm ◽  
Julio Cesar Martins de Oliveira ◽  
Klaus Reichardt ◽  
Osny Oliveira Santos Bacchi ◽  
...  

The state-space approach is used to describe surface soil water content and temperature behaviour, in a field experiment in which sugarcane is submitted to different management practices. The treatments consisted of harvest trash mulching, bare soil, and burned trash, all three in a ratoon crop, after first cane harvest. One transect of 84 points was sampled, meter by meter, covering all treatments and borders. The state-space approach is described in detail and the results show that soil water contents measured along the transect could successfully be estimated from water content and temperature observations made at the first neighbour.


2017 ◽  
Vol 65 (1) ◽  
pp. 88-98 ◽  
Author(s):  
Klaas Oostindie ◽  
Louis W. Dekker ◽  
Jan G. Wesseling ◽  
Violette Geissen ◽  
Coen J. Ritsema

Abstract Soil water content and actual water repellency were assessed for soil profiles at two sites in a bare and grasscovered plot of a sand pasture, to investigate the impact of the grass removal on both properties. The soil of the plots was sampled six times in vertical transects to a depth of 33 cm between 23 May and 7 October 2002. On each sampling date the soil water contents were measured and the persistence of actual water repellency was determined of field-moist samples. Considerably higher soil water contents were found in the bare versus the grass-covered plots. These alterations are caused by differences between evaporation and transpiration rates across the plots. Noteworthy are the often excessive differences in soil water content at depths of 10 to 30 cm between the bare and grass-covered plots. These differences are a consequence of water uptake by the roots in the grass-covered plots. The water storage in the upper 19 cm of the bare soil was at least two times greater than in the grass-covered soil during dry periods. A major part of the soil profile in the grass-covered plots exhibited extreme water repellency to a depth of 19 cm on all sampling dates, while the soil profile of the bare plots was completely wettable on eight of the twelve sampling dates. Significant differences in persistence of actual water repellency were found between the grass-covered and bare plots.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bing Wang ◽  
Jianzhi Niu ◽  
Ronny Berndtsson ◽  
Linus Zhang ◽  
Xiongwen Chen ◽  
...  

AbstractThe use of organic mulch is important for urban green applications. For urban areas in arid and semiarid regions receiving short high-intensive rainfall, rainfall characteristics, and soil slope play an important role for mulch functioning. These properties of mulch were studied. For this purpose, rainfall simulation experiments using organic mulching were conducted in Jiufeng National Forestry Park to analyze the influence of organic mulch under different slope and heavy rainfall events. The results showed that soil water content displayed a decreasing tendency with increasing mulch application. Compared to bare soil, a mulch application of 0.25 kg/m2 and 0.50 kg/m2 led to maximum soil water content and maximum runoff decrease occurred for 0.50 kg/m2 mulch. Higher application rate of mulch displayed less soil water content and greater runoff. The runoff amount and runoff generation rate decreased by 28–83% and 21–83%, respectively, as compared to bare soil. With a mulch application of 0.25–1.00 kg/m2, soil drainage accounted for 56–60% of total rainfall. Overall, an efficient mulch application was found to be 0.25–0.50 kg/m2. The results of this study are relevant for arid and semiarid urban regions that experience heavy rainfall.


1975 ◽  
Vol 14 (1) ◽  
pp. 109-113 ◽  
Author(s):  
S. B. Idso ◽  
R. D. Jackson ◽  
R. J. Reginato ◽  
B. A. Kimball ◽  
F. S. Nakayama

2013 ◽  
Vol 34 (17) ◽  
pp. 6202-6215 ◽  
Author(s):  
Arthur Genis ◽  
Leonid Vulfson ◽  
Dan G. Blumberg ◽  
Michael Sprinstin ◽  
Alexey Kotlyar ◽  
...  

2020 ◽  
Vol 51 (6) ◽  
pp. 1349-1357
Author(s):  
Peigui Liu ◽  
Yan Xia ◽  
Manting Shang

Abstract To quantitatively evaluate in the laboratory the effect of soil temperature on bare soil evaporation, this study uses two indoor soil columns and homogenized sand as an example to carry out the experimental study of soil temperature on bare soil evaporation in winter. The results show that the soil temperature directly affects the change in bare soil evaporation and that the effect decreases as the soil temperature decreases. Because of the influence of soil temperature, the soil water movement accelerates, and the soil water content increases. At a depth of 50 cm, the average difference in soil water content between groups A and B was 7.61%. The soil evaporation when considering the soil temperature was obviously greater than that without considering the soil temperature. This shows that in a laboratory environment where the soil temperature is higher than the room temperature in winter, the effect of the soil temperature on bare soil evaporation is significant. Soil temperature directly affects soil water movement and distribution, which is one of the important influencing factors affecting bare soil evaporation.


Sign in / Sign up

Export Citation Format

Share Document