Real world issues with real-time control of MABEL: A platform for experimental control of bipedal locomotion

Author(s):  
Jeffrey Koncsol ◽  
Hae-Won Park ◽  
Koushil Sreenath
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Byounghoon Kim ◽  
Shobha Channabasappa Kenchappa ◽  
Adhira Sunkara ◽  
Ting-Yu Chang ◽  
Lowell Thompson ◽  
...  

Modern neuroscience research often requires the coordination of multiple processes such as stimulus generation, real-time experimental control, as well as behavioral and neural measurements. The technical demands required to simultaneously manage these processes with high temporal fidelity is a barrier that limits the number of labs performing such work. Here we present an open-source, network-based parallel processing framework that lowers this barrier. The Real-Time Experimental Control with Graphical User Interface (REC-GUI) framework offers multiple advantages: (i) a modular design that is agnostic to coding language(s) and operating system(s) to maximize experimental flexibility and minimize researcher effort, (ii) simple interfacing to connect multiple measurement and recording devices, (iii) high temporal fidelity by dividing task demands across CPUs, and (iv) real-time control using a fully customizable and intuitive GUI. We present applications for human, non-human primate, and rodent studies which collectively demonstrate that the REC-GUI framework facilitates technically demanding, behavior-contingent neuroscience research.Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (<xref ref-type="decision-letter" rid="SA1">see decision letter</xref>).


2018 ◽  
Author(s):  
Byounghoon Kim ◽  
Shobha Kenchappa ◽  
Adhira Sunkara ◽  
Ting-Yu Chang ◽  
Lowell Thompson ◽  
...  

AbstractModern neuroscience research often requires the coordination of multiple processes such as stimulus generation, real-time experimental control, as well as behavioral and neural measurements. The technical demands required to simultaneously manage these processes with high temporal fidelity limits the number of labs capable of performing such work. Here we present an open-source network-based parallel processing framework that eliminates these barriers. The Real-Time Experimental Control with Graphical User Interface (REC-GUI) framework offers multiple advantages: (i) a modular design agnostic to coding language(s) and operating system(s) that maximizes experimental flexibility and minimizes researcher effort, (ii) simple interfacing to connect measurement and recording devices, (iii) high temporal fidelity by dividing task demands across CPUs, and (iv) real-time control using a fully customizable and intuitive GUI. Testing results demonstrate that the REC-GUI framework facilitates technically demanding, behavior-contingent neuroscience research. Sample code and hardware configurations are downloadable, and future developments will be regularly released.


1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


2007 ◽  
Vol 73 (12) ◽  
pp. 1369-1374
Author(s):  
Hiromi SATO ◽  
Yuichiro MORIKUNI ◽  
Kiyotaka KATO

Author(s):  
Vladimir V. NEKRASOV

Developing a microcontroller-based system for controlling the flywheel motor of high-dynamics spacecraft using Russian-made parts and components made it possible to make statement of the problem of searching control function for a preset rotation rate of the flywheel rotor. This paper discusses one of the possible options for mathematical study of the stated problem, namely, application of structural analysis based on graph theory. Within the framework of the stated problem a graph was constructed for generating the new required rate, while in order to consider the stochastic case option the incidence and adjacency matrices were constructed. The stated problem was solved using a power matrix which transforms a set of contiguous matrices of the graph of admissible solution edge sequences, the real-time control function was found. Based on the results of this work, operational trials were run for the developed control function of the flywheel motor rotor rotation rate, a math model was constructed for the real-time control function, and conclusions were drawn about the feasibility of implementing the results of this study. Key words: Control function, graph, incidence matrix, adjacency matrix, power matrix, microcontroller control of the flywheel motor, highly dynamic spacecraft.


Sign in / Sign up

Export Citation Format

Share Document