Reduced jerk joint space trajectory planning method using 5-3-5 spline for robot manipulators

Author(s):  
C. D. Porawagama ◽  
S. R. Munasinghe
Robotica ◽  
2002 ◽  
Vol 20 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Shigang Yue ◽  
Dominik Henrich ◽  
W. L. Xu ◽  
S. K. Tso

The paper focuses on the problem of point-to-point trajectory planning for flexible redundant robot manipulators (FRM) in joint space. Compared with irredundant flexible manipulators, a FRM possesses additional possibilities during point-to-point trajectory planning due to its kinematics redundancy. A trajectory planning method to minimize vibration and/or executing time of a point-to-point motion is presented for FRMs based on Genetic Algorithms (GAs). Kinematics redundancy is integrated into the presented method as planning variables. Quadrinomial and quintic polynomial are used to describe the segments that connect the initial, intermediate, and final points in joint space. The trajectory planning of FRM is formulated as a problem of optimization with constraints. A planar FRM with three flexible links is used in simulation. Case studies show that the method is applicable.


2021 ◽  
Vol 11 (19) ◽  
pp. 9217
Author(s):  
Haichuang Xia ◽  
Xiaoping Zhang ◽  
Hong Zhang

Compared with wheeled and tracked robots, legged robots have better movement ability and are more suitable for the exploration of unknown environments. In order to further improve the adaptability of legged robots to complex terrains such as slopes, obstacle environments, and so on, this paper makes a new design of the legged robot’s foot sensing structure that can successfully provide accurate feedback of the landing information. Based on this information, a new foot trajectory planning method named three-element trajectory determination method is proposed. For each leg in one movement period, the three elements are the start point in the support phase, the end point in the support phase, and the joint angle changes in the transfer phase where the first two elements are used to control the height, distance, and direction of the movement, and the third element is used make decisions during the lifting process of the leg. For the support phase, the trajectory is described in Cartesian space, and a spline of linear function with parabolic blends is used. For the transfer phase, the trajectory is described in joint-space, and the joint angle function is designed as the superposition of the joint angle reverse-chronological function and the interpolation function which is obtained based on joint angle changes. As an important legged robot, a hexapod robot that we designed by ourselves with triangle gait is chosen to test the proposed foot trajectory planning method. Experiments show that, while the foot’s landing information can be read and based on the three-element trajectory planning method, the hexapod robot can achieve stable movement even in very complex scenes. Although the experiments are performed on a hexapod robot, our method is applicable to all forms of legged robots.


2021 ◽  
Vol 260 ◽  
pp. 03009
Author(s):  
Bo Zhang ◽  
Bingqiang Chen ◽  
Yansong Deng

The 4 degree of freedom robot arm of a table tennis robot has a variety of trajectories. In order to improve the response and the success rate of the shots, we used the joint space trajectory planning method to establish a kinematic model with the robot arm joints as variables, and by combining it with the robot arm kinematics, we obtained the relevant parameters for each joint of the robot arm. Simulation tests and physical tests were carried out to obtain a more accurate trajectory of the robot arm.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 859 ◽  
Author(s):  
Jiangyu Lan ◽  
Yinggang Xie ◽  
Guangjun Liu ◽  
Manxin Cao

Aiming at the characteristics of high efficiency and smoothness in the motion process of collaborative robot, a multi-objective trajectory planning method is proposed. Firstly, the kinematics model of the collaborative robot is established, and the trajectory in the workspace is converted into joint space trajectory using inverse kinematics method. Secondly, seven-order B-spline functions are used to construct joint trajectory sequences to ensure the continuous position, velocity, acceleration and jerk of each joint. Then, the trajectory competitive multi-objective particle swarm optimization (TCMOPSO) algorithm is proposed to search the Pareto optimal solutions set of the robot’s time-energy-jerk optimal trajectory. Further, the normalized weight function is proposed to select the appropriate solution. Finally, the algorithm simulation experiment is completed in MATLAB, and the robot control experiment is completed using the Robot Operating System (ROS). The experimental results show that the method can achieve effective multi-objective optimization, the appropriate optimal trajectory can be obtained according to the actual requirements, and the collaborative robot is actually operating well.


2011 ◽  
Vol 80-81 ◽  
pp. 1075-1080
Author(s):  
Zong Wu Xie ◽  
Cao Li ◽  
Hong Liu

A new joint space trajectory planning method for the series robot is proposed. Comparing with the traditional path planning methods which can only guarantee the planned trajectory velocity or acceleration continuous, the proposed trajectory planning algorithm can also ensure the derivative of acceleration (Jerk) continuous within a limit threshold. At the end of this paper, the proposed path planning algorithm is validated of having a great performance on robot trajectory tracking.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shan Fang ◽  
Lan Yang ◽  
Tianqi Wang ◽  
Shoucai Jing

Traffic lights force vehicles to stop frequently at signalized intersections, which leads to excessive fuel consumption, higher emissions, and travel delays. To address these issues, this study develops a trajectory planning method for mixed vehicles at signalized intersections. First, we use the intelligent driver car-following model to analyze the string stability of traffic flow upstream of the intersection. Second, we propose a mixed-vehicle trajectory planning method based on a trigonometric model that considers prefixed traffic signals. The proposed method employs the proportional-integral-derivative (PID) model controller to simulate the trajectory when connected vehicles (equipped with internet access) follow the optimal advisory speed. Essentially, only connected vehicle trajectories need to be controlled because normal vehicles simply follow the connected vehicles according to the Intelligent Driver Model (IDM). The IDM model aims to minimize traffic oscillation and ensure that all vehicles pass the signalized intersection without stopping. The results of a MATLAB simulation indicate that the proposed method can reduce fuel consumption and NOx, HC, CO2, and CO concentrations by 17%, 22.8%, 17.8%, 17%, and 16.9% respectively when the connected vehicle market penetration is 50 percent.


2014 ◽  
Vol 602-605 ◽  
pp. 1352-1357 ◽  
Author(s):  
Yong Ting Zhao ◽  
Bin Zheng ◽  
Hong Lin Ma

This paper proposes a new method of 6-DOF serial robot’s trajectory planning. Ensuring to satisfy the physical constraints of space conditions, the robot’s trajectory is interpolated in the Cartesian coordinate system, and using quaternion interpolation to solve the multiple solution problem in RPY interpolation. Meanwhile, the interpolated position information is transformed into the angular displacement information of the joint coordinate system, and the joint space trajectory planning is achieved using the genetic algorithms integrated velocity, acceleration, jerk and torque and other important kinematic and dynamic constraints. In robot safety and stability, the method is better than the general approach, and it has both the ideal trajectory parameters of the global search ability and performance planning.


Sign in / Sign up

Export Citation Format

Share Document