Short-term Power Generation Prediction of Photovoltaic Panels Based on Meteorological Parameters and Support Vector Machine

Author(s):  
Huishuang Xing ◽  
Bo Zhao ◽  
Zhi Wang
2019 ◽  
Vol 44 (3) ◽  
pp. 266-281 ◽  
Author(s):  
Zhongda Tian ◽  
Yi Ren ◽  
Gang Wang

Wind speed prediction is an important technology in the wind power field; however, because of their chaotic nature, predicting wind speed accurately is difficult. Aims at this challenge, a backtracking search optimization–based least squares support vector machine model is proposed for short-term wind speed prediction. In this article, the least squares support vector machine is chosen as the short-term wind speed prediction model and backtracking search optimization algorithm is used to optimize the important parameters which influence the least squares support vector machine regression model. Furthermore, the optimal parameters of the model are obtained, and the short-term wind speed prediction model of least squares support vector machine is established through parameter optimization. For time-varying systems similar to short-term wind speed time series, a model updating method based on prediction error accuracy combined with sliding window strategy is proposed. When the prediction model does not match the actual short-term wind model, least squares support vector machine trains and re-establishes. This model updating method avoids the mismatch problem between prediction model and actual wind speed data. The actual collected short-term wind speed time series is used as the research object. Multi-step prediction simulation of short-term wind speed is carried out. The simulation results show that backtracking search optimization algorithm–based least squares support vector machine model has higher prediction accuracy and reliability for the short-term wind speed. At the same time, the prediction performance indicators are also improved. The prediction result is that root mean square error is 0.1248, mean absolute error is 0.1374, mean absolute percentile error is 0.1589% and R2 is 0.9648. When the short-term wind speed varies from 0 to 4 m/s, the average value of absolute prediction error is 0.1113 m/s, and average value of absolute relative prediction error is 8.7111%. The proposed prediction model in this article has high engineering application value.


2018 ◽  
Vol 13 ◽  
pp. 174830181879706 ◽  
Author(s):  
Song Qiang ◽  
Yang Pu

In this work, we summarized the characteristics and influencing factors of load forecasting based on its application status. The common methods of the short-term load forecasting were analyzed to derive their advantages and disadvantages. According to the historical load and meteorological data in a certain region of Taizhou, Zhejiang Province, a least squares support vector machine model was used to discuss the influencing factors of forecasting. The regularity of the load change was concluded to correct the “abnormal data” in the historical load data, thus normalizing the relevant factors in load forecasting. The two parameters are as follows Gauss kernel function and Eigen parameter C in LSSVM had a significant impact on the model, which was still solved by empirical methods. Therefore, the particle swarm optimization was used to optimize the model parameters. Taking the error of test set as the basis of judgment, the optimization of model parameters was achieved to improve forecast accuracy. The practical examples showed that the method in the work had good convergence, forecast accuracy, and training speed.


2017 ◽  
Vol 21 (1) ◽  
pp. 37 ◽  
Author(s):  
Hua Deng ◽  
Yan Li ◽  
Yingchao Zhang ◽  
Hou Zhou ◽  
Peipei Cheng ◽  
...  

The forecast of wind energy is closely linked to the prediction of the variation of winds over very short time intervals. Four wind towers located in the Inner Mongolia were selected to understand wind power resources in the compound plateau region. The mesoscale weather research and forecasting combining Yonsei University scheme and Noah land surface model (WRF/YSU/Noah) with 1-km horizontal resolution and 10-min time resolution were used to be as the wind numerical weather prediction (NWP) model. Three statistical techniques, persistence, back-propagation artificial neural network (BP-ANN), and least square support vector machine (LS-SVM) were used to improve the wind speed forecasts at a typical wind turbine hub height (70 m) along with the WRF/YSU/Noah output. The current physical-statistical forecasting techniques exhibit good skill in three different time scales: (1) short-term (day-ahead); (2) immediate-short-term (6-h ahead); and (3) nowcasting (1-h ahead). The forecast method, which combined WRF/YSU/Noah outputs, persistence, and LS-SVM methods, increases the forecast skill by 26.3-49.4% compared to the direct outputs of numerical WRF/YSU/Noah model. Also, this approach captures well the diurnal cycle and seasonal variability of wind speeds, as well as wind direction. Predicción de vientos en una altiplanicie a la altura del eje con el esquema de la Universidad Yonsei/Modelo Superficie Terrestre Noah y la predicción estadísticaResumenLa estimación de la energía eólica está relacionada con la predicción en la variación de los vientos en pequeños intervalos de tiempo. Se seleccionaron cuatro torres eólicas ubicadas al interior de Mongolia para estudiar los recursos eólicos en la complejidad de un altiplano. Se utilizó la investigación climática a mesoscala y la combinación del esquema de la Universidad Yonsei con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah), con resolución de 1km horizontal y 10 minutos, como el modelo numérico de predicción meteorológica (NWP, del inglés Numerical Weather Prediction). Se utilizaron tres técnicas estadísticas, persistencia, propagación hacia atrás en redes neuronales artificiales y máquina de vectores de soporte-mínimos cuadrados (LS-SVM, del inglés Least Square Support Vector Machine), para mejorar la predicción de la velocidad del viento en una turbina con la altura del eje a 70 metros y se complementó con los resultados del WRF/YSU/Noah. Las técnicas de predicción físico-estadísticas actuales tienen un buen desempeo en tres escalas de tiempo: (1) corto plazo, un día en adelante; (2) mediano plazo, de seis días en adelante; (3) cercano, una hora en adelante. Este método de predicción, que combina los resultados WRF/YSU/Noah con los métodos de persistencia y LS-SVM incrementa la precisión de predicción entre 26,3 y 49,4 por ciento, comparado con los resultados directos del modelo numérico WRF/YSU/Noah. Además, este método diferencia la variabilidad de las estaciones y el ciclo diurno en la velocidad y la dirección del viento.


2014 ◽  
Vol 511-512 ◽  
pp. 927-930
Author(s):  
Shuai Zhang ◽  
Hai Rui Wang ◽  
Jin Huang ◽  
He Liu

In the paper, the forecast problems of wind speed are considered. In order to enhance the redaction accuracy of the wind speed, this article is about a research on particle swarm optimization least square support vector machine for short-term wind speed prediction (PSO-LS-SVM). Firstly, the prediction models are built by using least square support vector machine based on particle swarm optimization, this model is used to predict the wind speed next 48 hours. In order to further improve the prediction accuracy, on this basis, introduction of the offset optimization method. Finally large amount of experiments and measurement data comparison compensation verify the effectiveness and feasibility of the research on particle swarm optimization least square support vector machine for short-term wind speed prediction, Thereby reducing the short-term wind speed prediction error, very broad application prospects.


Author(s):  
Ralph Sherwin A. Corpuz ◽  

Analyzing natural language-based Customer Satisfaction (CS) is a tedious process. This issue is practically true if one is to manually categorize large datasets. Fortunately, the advent of supervised machine learning techniques has paved the way toward the design of efficient categorization systems used for CS. This paper presents the feasibility of designing a text categorization model using two popular and robust algorithms – the Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) Neural Network, in order to automatically categorize complaints, suggestions, feedbacks, and commendations. The study found that, in terms of training accuracy, SVM has best rating of 98.63% while LSTM has best rating of 99.32%. Such results mean that both SVM and LSTM algorithms are at par with each other in terms of training accuracy, but SVM is significantly faster than LSTM by approximately 35.47s. The training performance results of both algorithms are attributed on the limitations of the dataset size, high-dimensionality of both English and Tagalog languages, and applicability of the feature engineering techniques used. Interestingly, based on the results of actual implementation, both algorithms are found to be 100% effective in accurately predicting the correct CS categories. Hence, the extent of preference between the two algorithms boils down on the available dataset and the skill in optimizing these algorithms through feature engineering techniques and in implementing them toward actual text categorization applications.


Sign in / Sign up

Export Citation Format

Share Document