A Method for Recovering Maneuver Targets Spectra Based on the Algorithm of Decontaminating Ionospheric Slow Phase-Path Disturbance

Author(s):  
Jun Tang ◽  
Chengyu Hou ◽  
Yiying Shen
Keyword(s):  
2020 ◽  
Vol 29 (2) ◽  
pp. 188-198
Author(s):  
Cynthia G. Fowler ◽  
Margaret Dallapiazza ◽  
Kathleen Talbot Hadsell

Purpose Motion sickness (MS) is a common condition that affects millions of individuals. Although the condition is common and can be debilitating, little research has focused on the vestibular function associated with susceptibility to MS. One causal theory of MS is an asymmetry of vestibular function within or between ears. The purposes of this study, therefore, were (a) to determine if the vestibular system (oculomotor and caloric tests) in videonystagmography (VNG) is associated with susceptibility to MS and (b) to determine if these tests support the theory of an asymmetry between ears associated with MS susceptibility. Method VNG was used to measure oculomotor and caloric responses. Fifty young adults were recruited; 50 completed the oculomotor tests, and 31 completed the four caloric irrigations. MS susceptibility was evaluated with the Motion Sickness Susceptibility Questionnaire–Short Form; in this study, percent susceptibility ranged from 0% to 100% in the participants. Participants were divided into three susceptibility groups (Low, Mid, and High). Repeated-measures analyses of variance and pairwise comparisons determined significance among the groups on the VNG test results. Results Oculomotor test results revealed no significant differences among the MS susceptibility groups. Caloric stimuli elicited responses that were correlated positively with susceptibility to MS. Slow-phase velocity was slowest in the Low MS group compared to the Mid and High groups. There was no significant asymmetry between ears in any of the groups. Conclusions MS susceptibility was significantly and positively correlated with caloric slow-phase velocity. Although asymmetries between ears are purported to be associated with MS, asymmetries were not evident. Susceptibility to MS may contribute to interindividual variability of caloric responses within the normal range.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Talora L. Martin ◽  
Jordan Murray ◽  
Kiran Garg ◽  
Charles Gallagher ◽  
Aasef G. Shaikh ◽  
...  

AbstractWe evaluated the effects of strabismus repair on fixational eye movements (FEMs) and stereopsis recovery in patients with fusion maldevelopment nystagmus (FMN) and patients without nystagmus. Twenty-one patients with strabismus, twelve with FMN and nine without nystagmus, were tested before and after strabismus repair. Eye-movements were recorded during a gaze-holding task under monocular viewing conditions. Fast (fixational saccades and quick phases of nystagmus) and slow (inter-saccadic drifts and slow phases of nystagmus) FEMs and bivariate contour ellipse area (BCEA) were analyzed in the viewing and non-viewing eye. Strabismus repair improved the angle of strabismus in subjects with and without FMN, however patients without nystagmus were more likely to have improvement in stereoacuity. The fixational saccade amplitudes and intersaccadic drift velocities in both eyes decreased after strabismus repair in subjects without nystagmus. The slow phase velocities were higher in patients with FMN compared to inter-saccadic drifts in patients without nystagmus. There was no change in the BCEA after surgery in either group. In patients without nystagmus, the improvement of the binocular function (stereopsis), as well as decreased fixational saccade amplitude and intersaccadic drift velocity, could be due, at least partially, to central adaptive mechanisms rendered possible by surgical realignment of the eyes. The absence of improvement in patients with FMN post strabismus repair likely suggests the lack of such adaptive mechanisms in patients with early onset infantile strabismus. Assessment of fixation eye movement characteristics can be a useful tool to predict functional improvement post strabismus repair.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanurup Das ◽  
Abhimanyu Harshey ◽  
Ankit Srivastava ◽  
Kriti Nigam ◽  
Vijay Kumar Yadav ◽  
...  

AbstractThe ex-vivo biochemical changes of different body fluids also referred as aging of fluids are potential marker for the estimation of Time since deposition. Infrared spectroscopy has great potential to reveal the biochemical changes in these fluids as previously reported by several researchers. The present study is focused to analyze the spectral changes in the ATR-FTIR spectra of three body fluids, commonly encountered in violent crimes i.e., semen, saliva, and urine as they dry out. The whole analytical timeline is divided into relatively slow phase I due to the major contribution of water and faster Phase II due to significant evaporation of water. Two spectral regions i.e., 3200–3400 cm−1 and 1600–1000 cm−1 are the major contributors to the spectra of these fluids. Several peaks in the spectral region between 1600 and 1000 cm−1 showed highly significant regression equation with a higher coefficient of determination values in Phase II in contrary to the slow passing Phase I. Principal component and Partial Least Square Regression analysis are the two chemometric tool used to estimate the time since deposition of the aforesaid fluids as they dry out. Additionally, this study potentially estimates the time since deposition of an offense from the aging of the body fluids at the early stages after its occurrence as well as works as the precursor for further studies on an extended timeframe.


Healthcare ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Chong-Bin Tsai ◽  
Wei-Yu Hung ◽  
Wei-Yen Hsu

Optokinetic nystagmus (OKN) is an involuntary eye movement induced by motion of a large proportion of the visual field. It consists of a “slow phase (SP)” with eye movements in the same direction as the movement of the pattern and a “fast phase (FP)” with saccadic eye movements in the opposite direction. Study of OKN can reveal valuable information in ophthalmology, neurology and psychology. However, the current commercially available high-resolution and research-grade eye tracker is usually expensive. Methods & Results: We developed a novel fast and effective system combined with a low-cost eye tracking device to accurately quantitatively measure OKN eye movement. Conclusions: The experimental results indicate that the proposed method achieves fast and promising results in comparisons with several traditional approaches.


1983 ◽  
Vol 91 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Carsten Wennmo ◽  
Nils Gunnar Henriksson ◽  
Bengt Hindfelt ◽  
Ilmari PyykkÖ ◽  
MÅNs Magnusson

The maximum velocity gain of smooth pursuit and optokinetic, vestibular, and optovestibular slow phases was examined in 15 patients with pontine, 10 with medullary, 10 with cerebellar, and 5 with combined cerebello — brain stem disorders. Marked dissociations were observed between smooth pursuit and optokinetic slow phases, especially in medullary disease. A cerebellar deficit enhanced slow phase velocity gain during rotation in darkness, whereas the corresponding gain during rotation in light was normal.


2012 ◽  
Vol 107 (2) ◽  
pp. 704-717 ◽  
Author(s):  
Henri Gioanni ◽  
Pierre-Paul Vidal

Context-specific adaptation (Shelhamer M, Clendaniel R. Neurosci Lett 332: 200–204, 2002) explains that reflexive responses can be maintained with different “calibrations” for different situations (contexts). Which context cues are crucial and how they combine to evoke context-specific adaptation is not fully understood. Gaze stabilization in birds is a nice model with which to tackle that question. Previous data showed that when pigeons ( Columba livia) were hung in a harness and subjected to a frontal airstream provoking a flying posture (“flying condition”), the working range of the optokinetic head response [optocollic reflex (OCR)] extended toward higher velocities compared with the “resting condition.” The present study was aimed at identifying which context cues are instrumental in recalibrating the OCR. We investigated that question by using vibrating stimuli delivered during the OCR provoked by rotating the visual surroundings at different velocities. The OCR gain increase and the boost of the fast phase velocity observed during the “flying condition” were mimicked by body vibration. On the other hand, the newly emerged relationship between the fast-phase and slow-phase velocities in the “flying condition” was mimicked by head vibration. Spinal cord lesion at the lumbosacral level decreased the effects of body vibration, whereas lesions of the lumbosacral apparatus had no effect. Our data suggest a major role of muscular proprioception in the context-specific adaptation of the stabilizing behavior, while the vestibular system could contribute to the context-specific adaptation of the orienting behavior. Participation of an efferent copy of the motor command driving the flight cannot be excluded.


2008 ◽  
Vol 1235 ◽  
pp. 31-44 ◽  
Author(s):  
Wolfgang Klimesch ◽  
Roman Freunberger ◽  
Paul Sauseng ◽  
Walter Gruber

2013 ◽  
Vol 5 (2) ◽  
pp. 2345-2388 ◽  
Author(s):  
P. Schmidt ◽  
B. Lund ◽  
J-O. Näslund

Abstract. In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.


Sign in / Sign up

Export Citation Format

Share Document