Dynamic crushing and energy absorption of functionally graded aluminum cellular metal with cubic structure

Author(s):  
Yue Wang ◽  
He Mao ◽  
Qiyang Zuo ◽  
Kai He ◽  
Ruxu Du
Author(s):  
Xiaobing Dang ◽  
Kai He ◽  
Qiyang Zuo ◽  
Jiuhua Li ◽  
Ruxu Du

It is well known that cellular metal is an ideal structure used in transportation passive safety field for its low density and high energy absorption capacity. In this paper, a kind of regular cellular metal based on cubic structure is proposed. The cubic cells are manufactured through sheet metal stamping process. Then the cells could be bonded together by adhesive to form the cellular structure. The compressive properties of the cellular metal are studied by experiments. The dynamic behaviors are studied by numerical simulations. To distinguish the individual and interactive effects on the energy absorption capacity, a full factorial Design of Experiment with sixteen configurations is carried out based on the four parameters that are essential to the design of cellular metal. The effects of impact velocity on crushing deformation are analyzed. It has been shown that the regular cellular metal based on cubic structure will have a wide application in industry.


2012 ◽  
Vol 706-709 ◽  
pp. 711-716 ◽  
Author(s):  
Tadaharu Adachi ◽  
Masahiro Higuchi

Function of functionally-graded (FG) foams as energy absorption material for impact was discussed on the basis of theoretical analysis, and fabrication process of the foams was proposed in the paper. The FG foams were found to be useful as impact absorber due to progressively local fracture or cushion in the theoretical analysis. Next the fabrication process of the FG foams was suggested. The graded dispersion of the micro-balloons was conducted before curing the matrix resin in the process. The density distributions in the FG foams were confirmed to be predicted by the numerical analysis on the basis of floating the micro-balloons. Finally, compression tests were carried out to evaluate mechanical properties.


2018 ◽  
Vol 928 ◽  
pp. 243-248 ◽  
Author(s):  
Yu Liang Chen ◽  
Chin Yu Huang

This study compared the ballistic performance of alumina (Al2O3)/ zirconia (ZrO2) functionally graded material (FGM) specimens with various levels of thickness and ZrO2 content and a pure Al2O3 single-layer ceramic composite (PCM). Ballistic tests were conducted with 0.3-inch armor-piercing (AP) projectiles, and finite element code LS-DYNA was used to examine energy absorption, stress distribution, and ceramic cone failure in the specimens. The findings are as follows: First, regarding energy absorption per unit of areal density, the 5% FGMs had the highest ballistic performance, which increased by up to 8%. By contrast, the ballistic performance of the 15% FGMs declined significantly to lower than that of the PCM. Second, the capability of the ceramic cone to withstand stress damage and projectiles was significantly greater in the 5% FGMs than in the 15% FGMs. Third, the wave impedance variations increased with the ZrO2 content in each layer, thereby enhancing the interactions between impact waves and aggravating ceramic damage. Thus, the intensities of transmission and reflection waves in the 15% FGMs increased, thereby causing reductions in its ballistic performance.


Author(s):  
Sean Jenson ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Thin walled axial members are typically used in automobiles’ side and front chassis to improve crashworthiness of vehicles. Extensive work has been done in exploring energy absorbing characteristics of thin walled structural members under axial compressive loading. The present study is a continuation of the work presented earlier on evaluating the effects of inclusion of functionally graded cellular structures in thin walled members under axial compressive loading. A compact functionally graded composite cellular core was introduced inside a cross tube with side length and wall thickness of 25.4 mm and 3.048 mm, respectively. The parameters governing the energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, plateau stress level, and energy curves, were evaluated. The results showed that the inclusion of composite graded cellular structure increased the energy absorption capacity of the cross tube significantly. The composite graded structure underwent progressive stepwise, layer by layer, crushing mode and provided lateral stability to the cross tube thus delaying local tube wall collapse and promoting large localized folds on the tube’s periphery as compared to highly localized and compact deformation modes that were observed in the empty cross tube under axial compressive loading. The variation in deformation mode resulted in enhanced stiffness of the composite structure, and therefore, high energy absorption by the structure. This aspect has a potential to be exploited to improve the crashworthiness of automobile structures.


2020 ◽  
Vol 27 ◽  
pp. 1928-1933
Author(s):  
J. Nagarjun ◽  
A. Praveen Kumar ◽  
K. Yamini Reddy ◽  
L. Ponraj Sankar

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 517 ◽  
Author(s):  
Rinoj Gautam ◽  
Sridhar Idapalapati

Cellular lattice structures have important applications in aerospace, automobile and defense industries due to their high specific strength, modulus and energy absorption. Additive manufacturing provides the design freedom to fabricate complex cellular structures. This study investigates the compressive properties and deformation behavior of a Ti-6Al-4V unit Kagome structure fabricated by selective laser melting. Further, the mechanical performance of multi-unit and multi-layer Kagome structure of acrylonitrile butadiene styrene (ABS) ABS-M30™ manufactured by fused deposition modeling is explored. The effect of a number of layers of Kagome structure on the compressive properties is investigated. This paper also explores the mechanical properties of functionally graded and uniform density Kagome structure. The stiffness of the structure decreased with the increase in the number of layers whereas no change in peak load was observed. The functionally graded Kagome structure provided 35% more energy absorption than the uniform density structure.


Sign in / Sign up

Export Citation Format

Share Document