Adaptive Control of Man-machine Interaction Force for Lower Limb Exoskeleton Rehabilitation Robot*

Author(s):  
Aibin Zhu ◽  
Yao Tu ◽  
Weihao Zheng ◽  
Huang Shen ◽  
Xiaodong Zhang
Author(s):  
Jian Li ◽  
Diansheng Chen ◽  
Chunjing Tao ◽  
Hui Li

Purpose Many studies have shown that rehabilitation robots are crucial for lower limb dysfunction, but application of many robotics have yet to be seen to actual use in China. This study aimed to improve a lower limb rehabilitation robot by details improving and practical design. Design/methodology/approach Structures and control system of a lower limb rehabilitation robot are improved in detail, including joint calculations, comfort analysis and feedback logic creation, and prototype experiments on healthy individuals and patients are conducted in a hospital. Findings All participating subjects did not experience any problems. The experiment shows detail improving is reasonable, and feasibility of the robot was confirmed, which has potential for overcoming difficulties and problems in practical application. Research limitations/implications Therapeutic effects need to be evaluated in the future. Also, more details should be improved continuously based on the actual demand. Originality/value The improved robot could assist the lower limb during standing or walking, which has significance for practical application and patients in China.


Author(s):  
Shan Chen ◽  
Tenghui Han ◽  
Fangfang Dong ◽  
Lei Lu ◽  
Haijun Liu ◽  
...  

Lower limb exoskeleton which augments the human performance is a wearable human–machine integrated system used to assist people carrying heavy loads. Recently, underactuated lower limb exoskeleton systems with some passive joints become more and more attractive due to the advantages of smaller weight, lower system energy consumption and lower cost. However, because of the less of control inputs, the existed control methods of fully actuated exoskeletons cannot be extended to underactuated systems, which makes the robust controller design of underactuated lower limb exoskeletons becomes more challenged. This article focuses on the high-performance human–machine interaction force control design of underactuated lower limb exoskeletons with passive ankle joint. In order to solve the reduction of control inputs, the holonomic constraint from the wearer is considered, which help transform the dynamics of 3-degree-of-freedom underactuated exoskeleton in joint space into a 2-degree-of-freedom fully actuated system in Cartesian space. A two-level interaction force controller using adaptive robust control algorithm is proposed to effectively address the negative effect of various model uncertainties and external disturbances. In order to facilitate the control parameter selection, a gain tuning method is also presented. Comparative simulations are carried out, which indicate that the proposed two-level interaction force controller achieves smaller interaction force and better robust performance to various modeling errors and disturbances.


Sign in / Sign up

Export Citation Format

Share Document