3D non-rigid pattern recognition based on structural analysis

Author(s):  
M. Hachani ◽  
A. Ouled Zaid ◽  
W. Puech
1984 ◽  
Vol 73 (6) ◽  
pp. 737-741 ◽  
Author(s):  
Yoshimasa Takahashi ◽  
Yoshikatsu Miyashita ◽  
Yuichiro Tanaka ◽  
Hiroshi Hayasaka ◽  
Hidetsugu Abe ◽  
...  

2016 ◽  
Vol 62 (4) ◽  
pp. 586-602 ◽  
Author(s):  
Emiko Uchikawa ◽  
Mathilde Lethier ◽  
Hélène Malet ◽  
Joanna Brunel ◽  
Denis Gerlier ◽  
...  

1995 ◽  
Vol 265 (1-2) ◽  
pp. 74-83 ◽  
Author(s):  
Elisabetta Maccioni ◽  
Paolo Mariani ◽  
Franco Rustichelli ◽  
Hervé Delacroix ◽  
Vladimir Troitsky ◽  
...  

Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Sign in / Sign up

Export Citation Format

Share Document