Single Event Effect Detection and Simulation Analysis for an ASIC

Author(s):  
Luo Lei ◽  
Liu Yinghui ◽  
Zhang Hongwei ◽  
Zheng Xuesong ◽  
Yu Qingkui ◽  
...  
Author(s):  
Samuel Chef ◽  
Chung Tah Chua ◽  
Yu Wen Siah ◽  
Philippe Perdu ◽  
Chee Lip Gan ◽  
...  

Abstract Today’s VLSI devices are neither designed nor manufactured for space applications in which single event effects (SEE) issues are common. In addition, very little information about the internal schematic and usually nothing about the layout or netlist is available. Thus, they are practically black boxes for satellite manufacturers. On the other hand, such devices are crucial in driving the performance of spacecraft, especially smaller satellites. The only way to efficiently manage SEE in VLSI devices is to localize sensitive areas of the die, analyze the regions of interest, study potential mitigation techniques, and evaluate their efficiency. For the first time, all these activities can be performed using the same tool with a single test setup that enables a very efficient iterative process that reduce the evaluation time from months to days. In this paper, we will present the integration of a pulsed laser for SEE study into a laser probing, laser stimulation, and emission microscope system. Use of this system will be demonstrated on a commercial 8 bit microcontroller.


2018 ◽  
Vol 59 ◽  
pp. 46-56 ◽  
Author(s):  
Robért Glein ◽  
Florian Rittner ◽  
Albert Heuberger

Author(s):  
Martha V. O'Bryan ◽  
Kenneth A. LaBel ◽  
Carl M. Szabo ◽  
Dakai Chen ◽  
Michael J. Campola ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 519 ◽  
Author(s):  
Jan Budroweit ◽  
Mattis Paul Jaksch ◽  
Maciej Sznajder

Radio frequency (RF) systems in space applications are usually designed for a single task and its requirements. Flexibility is mostly limited to software-defined adaption of the signal processing in digital signal processors (DSP) or field-programmable gate arrays (FPGA). RF specifications, such as frequency band selection or RF filter bandwidth are thereby restricted to the specific application requirements. New radio frequency integrated circuit (RFIC) devices also allow the software-based reconfiguration of various RF specifications. A transfer of this RFIC technology to space systems would have a massive impact to future radio systems for space applications. The benefit of this RFIC technology allows a selection of different RF radio applications, independent of their RF parameters, to be executed on a single unit and, thus, reduces the size and weight of the whole system. Since most RF application sin space system require a high level of reliability and the RFIC is not designed for the harsh environment in space, a characterization under these special environmental conditions is mandatory. In this paper, we present the single event effect (SEE) characterization of a selected RFIC device under proton irradiation. The RFIC being tested is immune to proton induced single event latch-up and other destructive events and shows a very low response to single failure interrupts. Thus, the device is defined as a good candidate for future, highly integrated radio system in space applications.


2019 ◽  
Vol 963 ◽  
pp. 738-741
Author(s):  
Hiroshi Kono ◽  
Teruyuki Ohashi ◽  
Takao Noda ◽  
Kenya Sano

Neutron single event effect (SEE) tolerance of SiC power MOSFETs with different drift region design were evaluated. The SEE is detected over the SEE threshold voltage (VSEE). The failure rate increases exponentially as the drain voltage increases above VSEE. The device with higher avalanche breakdown voltage has higher SEE threshold voltage. The neutron SEE tolerance of MOSFETs and PiN diodes of the same epitaxial structure were also evaluated. There was no significant difference in the neutron SEE tolerance of these devices.


Sign in / Sign up

Export Citation Format

Share Document