Correcting non-line-of-sight path length estimation for ultra-wideband indoor localization

Author(s):  
Quoc-Tuong Ngo ◽  
Pierre Roussel ◽  
Bruce Denby ◽  
Gerard Dreyfus
Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1238
Author(s):  
Javier San Martín ◽  
Ainhoa Cortés ◽  
Leticia Zamora-Cadenas ◽  
Bo Joel Svensson

In this paper, we analyze the performance of a positioning system based on the fusion of Ultra-Wideband (UWB) ranging estimates together with odometry and inertial data from the vehicle. For carrying out this data fusion, an Extended Kalman Filter (EKF) has been used. Furthermore, a post-processing algorithm has been designed to remove the Non Line-Of-Sight (NLOS) UWB ranging estimates to further improve the accuracy of the proposed solution. This solution has been tested using both a simulated environment and a real environment. This research work is in the scope of the PRoPART European Project. The different real tests have been performed on the AstaZero proving ground using a Radio Control car (RC car) developed by RISE (Research Institutes of Sweden) as testing platform. Thus, a real time positioning solution has been achieved complying with the accuracy requirements for the PRoPART use case.


2020 ◽  
Vol 10 (11) ◽  
pp. 3980 ◽  
Author(s):  
Cung Lian Sang ◽  
Bastian Steinhagen ◽  
Jonas Dominik Homburg ◽  
Michael Adams ◽  
Marc Hesse ◽  
...  

In ultra-wideband (UWB)-based wireless ranging or distance measurement, differentiation between line-of-sight (LOS), non-line-of-sight (NLOS), and multi-path (MP) conditions is important for precise indoor localization. This is because the accuracy of the reported measured distance in UWB ranging systems is directly affected by the measurement conditions (LOS, NLOS, or MP). However, the major contributions in the literature only address the binary classification between LOS and NLOS in UWB ranging systems. The MP condition is usually ignored. In fact, the MP condition also has a significant impact on the ranging errors of the UWB compared to the direct LOS measurement results. However, the magnitudes of the error contained in MP conditions are generally lower than completely blocked NLOS scenarios. This paper addresses machine learning techniques for identification of the three mentioned classes (LOS, NLOS, and MP) in the UWB indoor localization system using an experimental dataset. The dataset was collected in different conditions in different scenarios in indoor environments. Using the collected real measurement data, we compared three machine learning (ML) classifiers, i.e., support vector machine (SVM), random forest (RF) based on an ensemble learning method, and multilayer perceptron (MLP) based on a deep artificial neural network, in terms of their performance. The results showed that applying ML methods in UWB ranging systems was effective in the identification of the above-three mentioned classes. Specifically, the overall accuracy reached up to 91.9% in the best-case scenario and 72.9% in the worst-case scenario. Regarding the F1-score, it was 0.92 in the best-case and 0.69 in the worst-case scenario. For reproducible results and further exploration, we provide the publicly accessible experimental research data discussed in this paper at PUB (Publications at Bielefeld University). The evaluations of the three classifiers are conducted using the open-source Python machine learning library scikit-learn.


Author(s):  
Jie Wu ◽  
MingHua Zhu ◽  
Bo Xiao ◽  
Wei He

The mitigation of NLOS (non-line-of-sight) propagation conditions is one of main challenges in wireless signals based indoor localization. When RFID localization technology is applied in applications, RSS fluctuates frequently due to the shade and multipath effect of RF signal, which could result in localization inaccuracy. In particularly, when tags carriers are walking in LOS (line-of-sight) and NLOS hybrid environment, great attenuation of RSS will happen, which would result in great location deviation. The paper proposes an IMU-assisted (Inertial Measurement Unit) RFID based indoor localization in LOS/NLOS hybrid environment. The proposed method includes three improvements over previous RSS based positioning methods: IMU aided RSS filtering, IMU aided LOS/NLOS distinguishing and IMU aided LOS/NLOS environment switching. Also, CRLB (Cramér-Rao Low Bound) is calculated to prove theoretically that indoor positioning accuracy for proposed method in LOS/NLOS mixed environment is higher than position precision of only use RSS information. Simulation and experiments are conducted to show that proposed method can reduce the mean positioning error to around 3 meters without site survey.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1714
Author(s):  
JiWoong Park ◽  
SungChan Nam ◽  
HongBeom Choi ◽  
YoungEun Ko ◽  
Young-Bae Ko

This paper presents an improved ultra-wideband (UWB) line of sight (LOS)/non-line of sight (NLOS) identification scheme based on a hybrid method of deep learning and transfer learning. Previous studies have limitations, in that the classification accuracy significantly decreases in an unknown place. To solve this problem, we propose a transfer learning-based NLOS identification method for classifying the NLOS conditions of the UWB signal in an unmeasured environment. Both the multilayer perceptron and convolutional neural network (CNN) are introduced as classifiers for NLOS conditions. We evaluate the proposed scheme by conducting experiments in both measured and unmeasured environments. Channel data were measured using a Decawave EVK1000 in two similar indoor office environments. In the unmeasured environment, the existing CNN method showed an accuracy of approximately 44%, but when the proposed scheme was applied to the CNN, it showed an accuracy of up to 98%. The training time of the proposed scheme was measured to be approximately 48 times faster than that of the existing CNN. When comparing the proposed scheme with learning a new CNN in an unmeasured environment, the proposed scheme demonstrated an approximately 10% higher accuracy and approximately five times faster training time.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3464 ◽  
Author(s):  
Valentín Barral ◽  
Carlos J. Escudero ◽  
José A. García-Naya ◽  
Roberto Maneiro-Catoira

Indoor location systems based on ultra-wideband (UWB) technology have become very popular in recent years following the introduction of a number of low-cost devices on the market capable of providing accurate distance measurements. Although promising, UWB devices also suffer from the classic problems found when working in indoor scenarios, especially when there is no a clear line-of-sight (LOS) between the emitter and the receiver, causing the estimation error to increase up to several meters. In this work, machine learning (ML) techniques are employed to analyze several sets of real UWB measurements, captured in different scenarios, to try to identify the measurements facing non-line-of-sight (NLOS) propagation condition. Additionally, an ulterior process is carried out to mitigate the deviation of these measurements from the actual distance value between the devices. The results show that ML techniques are suitable to identify NLOS propagation conditions and also to mitigate the error of the estimates when there is LOS between the emitter and the receiver.


Sign in / Sign up

Export Citation Format

Share Document