Improved variable universe fuzzy PID application in brushless DC motor speed regulation system

Author(s):  
Zong-Shou Wang ◽  
Chao-Ying Liu ◽  
Xue-Ling Song ◽  
Zhe-Ying Song ◽  
Ze-Kun Yang
2013 ◽  
Vol 462-463 ◽  
pp. 775-781 ◽  
Author(s):  
Li Fang

Based on analyzing the mathematical model of brushless DC motor and shortcomings of the traditional PID control, combining with the intelligent algorithm and the conventional PID, the paper gives a improved algorithm and simulations in MATLAB environment. A brushless DC motor PWM speed regulation system is designed based on high-performance MCU. The improved algorithm and the conventional algorithm control effects were analyzed and compared in the experiment.


Author(s):  
Mohd Syakir Adli ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Siti Fauziah Toha Tohara

<p>This paper presents a control scheme for speed control system in brushless dc (BLDC) motor to be utilized for electric motorbike. While conventional motorbikes require engine and fuel, electric motorbikes require DC motor and battery pack in order to be powered up. The limitation with battery pack is that it will need to be recharged after a certain period and distance. As the recharging process is time consuming, a PID controller is designed to maintain the speed of the motor at its optimum state, thus ensuring a longer lasting battery time (until the next charge). The controller is designed to track variations of speed references and stabilizes the output speed accordingly. The simulation results conducted in MATLAB/SIMULINK® shows that the motor, equipped with the PID controller was able to track the reference speed in 7.8x10<sup>-2</sup> milliseconds with no overshoot.  The result shows optimistic possibility that the proposed controller can be used to maintain the speed of the motor at its optimum speed.</p>


2013 ◽  
Vol 336-338 ◽  
pp. 728-733
Author(s):  
Xi Zhu ◽  
Jian Guo Song ◽  
Qing Lu Zhang

In order to drive beam-pumping unit with brushless DC motor (BLDCM), a kind of motor speed regulator was investigated. When pumping unit is in up stroke, BLDCM is power-driven; when in down stoke, pumping unit is braked by BLDCM. To meet the operation mode, PI double closed loops control strategy and Pulse Width Modulation (PWM) are applied. Simulation and test in field show that our design has good control effect and popularizing value.


Sign in / Sign up

Export Citation Format

Share Document