Research on Micro-Nano Satellite Measurement Algorithm Based on Federal Filter

Author(s):  
Yuanming Ding ◽  
Huaxian Chen ◽  
Ran Zhang
2019 ◽  
Vol 55 (9) ◽  
pp. 1210-1217
Author(s):  
V. P. Ustinov ◽  
E. L. Baranova ◽  
K. N. Visheratin ◽  
M. I. Grachev ◽  
A. V. Kal’sin

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1589
Author(s):  
Krzysztof Kołek ◽  
Andrzej Firlit ◽  
Krzysztof Piątek ◽  
Krzysztof Chmielowiec

Monitoring power quality (PQ) indicators is an important part of modern power grids’ maintenance. Among different PQ indicators, flicker severity coefficients Pst and Plt are measures of voltage fluctuations. In state-of-the-art PQ measuring devices, the flicker measurement channel is usually implemented as a dedicated processor subsystem. Implementation of the IEC 61000-4-15 compliant flicker measurement algorithm requires a significant amount of computational power. In typical PQ analysers, the flicker measurement is usually implemented as a part of the meter’s algorithm performed by the main processor. This paper considers the implementation of the flicker measurement as an FPGA module to offload the processor subsystem or operate as an IP core in FPGA-based system-on-chip units. The measurement algorithm is developed and validated as a Simulink diagram, which is then converted to a fixed-point representation. Parts of the diagram are applied for automatic VHDL code generation, and the classifier block is implemented as a local soft-processor system. A simple eight-bit processor operates within the flicker measurement coprocessor and performs statistical operations. Finally, an IP module is created that can be considered as a flicker coprocessor module. When using the coprocessor, the main processor’s only role is to trigger the coprocessor and read the results, while the coprocessor independently calculates the flicker coefficients.


Author(s):  
Shiping Li ◽  
Jingang Zhong ◽  
Weixin Ling ◽  
Rui Min ◽  
Zhuoming Chen ◽  
...  

2005 ◽  
Vol 14 (10) ◽  
pp. 1657-1666 ◽  
Author(s):  
GUANGYU LI ◽  
HAIBIN ZHAO

In the experimental tests of gravity, there have been considerable interests in the possibility of intermediate-range gravity. In this paper, we use the earth–satellite measurement of earth gravity, the lunar orbiter measurement of lunar gravity, and lunar laser ranging measurement to constrain the intermediate-range gravity from λ = 1.2 × 107 m –3.8 × 108 m . The limits for this range are α = 10-8–5 × 10-8, which improve previous limits by about one order of magnitude in the range λ = 1.2 × 107 m –3.8 × 108 m .


Author(s):  
Christian Schwaferts ◽  
Patrick Schwaferts ◽  
Elisabeth von der Esch ◽  
Martin Elsner ◽  
Natalia P. Ivleva

AbstractMicro- and nanoplastic contamination is becoming a growing concern for environmental protection and food safety. Therefore, analytical techniques need to produce reliable quantification to ensure proper risk assessment. Raman microspectroscopy (RM) offers identification of single particles, but to ensure that the results are reliable, a certain number of particles has to be analyzed. For larger MP, all particles on the Raman filter can be detected, errors can be quantified, and the minimal sample size can be calculated easily by random sampling. In contrast, very small particles might not all be detected, demanding a window-based analysis of the filter. A bootstrap method is presented to provide an error quantification with confidence intervals from the available window data. In this context, different window selection schemes are evaluated and there is a clear recommendation to employ random (rather than systematically placed) window locations with many small rather than few larger windows. Ultimately, these results are united in a proposed RM measurement algorithm that computes confidence intervals on-the-fly during the analysis and, by checking whether given precision requirements are already met, automatically stops if an appropriate number of particles are identified, thus improving efficiency.


Sign in / Sign up

Export Citation Format

Share Document