Phase synchronization analysis of multi-channel Local Field Potentials based on high-resolution wavelet transform

Author(s):  
Xiaoman Hu ◽  
Xinyu Xu ◽  
Xin Tian
2018 ◽  
Vol 15 (4) ◽  
pp. 046019 ◽  
Author(s):  
Simeng Zhang ◽  
Allison T Connolly ◽  
Lauren R Madden ◽  
Jerrold L Vitek ◽  
Matthew D Johnson

2018 ◽  
Vol 119 (6) ◽  
pp. 2068-2081 ◽  
Author(s):  
Hank Bink ◽  
Madineh Sedigh-Sarvestani ◽  
Ivan Fernandez-Lamo ◽  
Lohith Kini ◽  
Hoameng Ung ◽  
...  

New devices that use targeted electrical stimulation to treat refractory localization-related epilepsy have shown great promise, although it is not well known which targets most effectively prevent the initiation and spread of seizures. To better understand how the brain transitions from healthy to seizing on a local scale, we induced focal epileptiform activity in the visual cortex of five anesthetized cats with local application of the GABAA blocker picrotoxin while simultaneously recording local field potentials on a high-resolution electrocorticography array and laminar depth probes. Epileptiform activity appeared in the form of isolated events, revealing a consistent temporal pattern of ictogenesis across animals with interictal events consistently preceding the appearance of seizures. Based on the number of spikes per event, there was a natural separation between seizures and shorter interictal events. Two distinct spatial regions were seen: an epileptic focus that grew in size as activity progressed, and an inhibitory surround that exhibited a distinct relationship with the focus both on the surface and in the depth of the cortex. Epileptiform activity in the cortical laminae was seen concomitant with activity on the surface. Focus spikes appeared earlier on electrodes deeper in the cortex, suggesting that deep cortical layers may be integral to recruiting healthy tissue into the epileptic network and could be a promising target for interventional devices. Our study may inform more effective therapies to prevent seizure generation and spread in localization-related epilepsies. NEW & NOTEWORTHY We induced local epileptiform activity and recorded continuous, high-resolution local field potentials from the surface and depth of the visual cortex in anesthetized cats. Our results reveal a consistent pattern of ictogenesis, characterize the spatial spread of the epileptic focus and its relationship with the inhibitory surround, and show that focus activity within events appears earliest in deeper cortical layers. These findings have potential implications for the monitoring and treatment of refractory epilepsy.


NeuroImage ◽  
2021 ◽  
Vol 231 ◽  
pp. 117853
Author(s):  
Carine De Sousa ◽  
C. Gaillard ◽  
C. Di Bello ◽  
F. Ben Hadj Hassen ◽  
S. Ben Hamed

2021 ◽  
Vol 11 (7) ◽  
pp. 882
Author(s):  
Yeon Hee Yu ◽  
Seong-Wook Kim ◽  
Dae-Kyoon Park ◽  
Ho-Yeon Song ◽  
Duk-Soo Kim ◽  
...  

Increased prevalence of chronic kidney disease (CKD) and neurological disorders including cerebrovascular disease, cognitive impairment, peripheral neuropathy, and dysfunction of central nervous system have been reported during the natural history of CKD. Psychological distress and depression are serious concerns in patients with CKD. However, the relevance of CKD due to decline in renal function and the pathophysiology of emotional deterioration is not clear. Male Sprague Dawley rats were divided into three groups: sham control, 5/6 nephrectomy at 4 weeks, and 5/6 nephrectomy at 10 weeks. Behavior tests, local field potentials, and histology and laboratory tests were conducted and investigated. We provided direct evidence showing that CKD rat models exhibited anxiogenic behaviors and depression-like phenotypes, along with altered hippocampal neural oscillations at 1–12 Hz. We generated CKD rat models by performing 5/6 nephrectomy, and identified higher level of serum creatinine and blood urea nitrogen (BUN) in CKD rats than in wild-type, depending on time. In addition, the level of α-smooth muscle actin (α-SMA) and collagen I for renal tissue was markedly elevated, with worsening fibrosis due to renal failures. The level of anxiety and depression-like behaviors increased in the 10-week CKD rat models compared with the 4-week rat models. In the recording of local field potentials, the power of delta (1–4 Hz), theta (4–7 Hz), and alpha rhythm (7–12 Hz) was significantly increased in the hippocampus of CKD rats compared with wild-type rats. Together, our findings indicated that anxiogenic behaviors and depression can be induced by CKD, and these abnormal symptoms can be worsened as the onset of CKD was prolonged. In conclusion, our results show that the hippocampus is vulnerable to uremia.


Sign in / Sign up

Export Citation Format

Share Document