A State of Art Approaches on Deep Learning Models in Healthcare: An Application Perspective

Author(s):  
K. Yazhini ◽  
D. Loganathan
2021 ◽  
Author(s):  
Atiq Rehman ◽  
Samir Brahim Belhaouari

<div><div><div><p>Video classification task has gained a significant success in the recent years. Specifically, the topic has gained more attention after the emergence of deep learning models as a successful tool for automatically classifying videos. In recognition to the importance of video classification task and to summarize the success of deep learning models for this task, this paper presents a very comprehensive and concise review on the topic. There are a number of existing reviews and survey papers related to video classification in the scientific literature. However, the existing review papers are either outdated, and therefore, do not include the recent state-of-art works or they have some limitations. In order to provide an updated and concise review, this paper highlights the key findings based on the existing deep learning models. The key findings are also discussed in a way to provide future research directions. This review mainly focuses on the type of network architecture used, the evaluation criteria to measure the success, and the data sets used. To make the review self- contained, the emergence of deep learning methods towards automatic video classification and the state-of-art deep learning methods are well explained and summarized. Moreover, a clear insight of the newly developed deep learning architectures and the traditional approaches is provided, and the critical challenges based on the benchmarks are highlighted for evaluating the technical progress of these methods. The paper also summarizes the benchmark datasets and the performance evaluation matrices for video classification. Based on the compact, complete, and concise review, the paper proposes new research directions to solve the challenging video classification problem.</p></div></div></div>


2021 ◽  
Author(s):  
Atiq Rehman ◽  
Samir Brahim Belhaouari

<div><div><div><p>Video classification task has gained a significant success in the recent years. Specifically, the topic has gained more attention after the emergence of deep learning models as a successful tool for automatically classifying videos. In recognition to the importance of video classification task and to summarize the success of deep learning models for this task, this paper presents a very comprehensive and concise review on the topic. There are a number of existing reviews and survey papers related to video classification in the scientific literature. However, the existing review papers are either outdated, and therefore, do not include the recent state-of-art works or they have some limitations. In order to provide an updated and concise review, this paper highlights the key findings based on the existing deep learning models. The key findings are also discussed in a way to provide future research directions. This review mainly focuses on the type of network architecture used, the evaluation criteria to measure the success, and the data sets used. To make the review self- contained, the emergence of deep learning methods towards automatic video classification and the state-of-art deep learning methods are well explained and summarized. Moreover, a clear insight of the newly developed deep learning architectures and the traditional approaches is provided, and the critical challenges based on the benchmarks are highlighted for evaluating the technical progress of these methods. The paper also summarizes the benchmark datasets and the performance evaluation matrices for video classification. Based on the compact, complete, and concise review, the paper proposes new research directions to solve the challenging video classification problem.</p></div></div></div>


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yun-Xia Ye ◽  
An-Nan Lu ◽  
Ming-Yi You ◽  
Kai Huang ◽  
Bin Jiang

The problem of position estimation has always been widely discussed in the field of wireless communication. In recent years, deep learning technology is rapidly developing and attracting numerous applications. The high-dimension modeling capability of deep learning makes it possible to solve the localization problems under many nonideal scenarios which are hard to handle by classical models. Consequently, wireless localization based on deep learning has attracted extensive research during the last decade. The research and applications on wireless localization technology based on deep learning are reviewed in this paper. Typical deep learning models are summarized with emphasis on their inputs, outputs, and localization methods. Technical details helpful for enhancing localization ability are also mentioned. Finally, some problems worth further research are discussed.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


2019 ◽  
Vol 9 (22) ◽  
pp. 4871 ◽  
Author(s):  
Quan Liu ◽  
Chen Feng ◽  
Zida Song ◽  
Joseph Louis ◽  
Jian Zhou

Earthmoving is an integral civil engineering operation of significance, and tracking its productivity requires the statistics of loads moved by dump trucks. Since current truck loads’ statistics methods are laborious, costly, and limited in application, this paper presents the framework of a novel, automated, non-contact field earthmoving quantity statistics (FEQS) for projects with large earthmoving demands that use uniform and uncovered trucks. The proposed FEQS framework utilizes field surveillance systems and adopts vision-based deep learning for full/empty-load truck classification as the core work. Since convolutional neural network (CNN) and its transfer learning (TL) forms are popular vision-based deep learning models and numerous in type, a comparison study is conducted to test the framework’s core work feasibility and evaluate the performance of different deep learning models in implementation. The comparison study involved 12 CNN or CNN-TL models in full/empty-load truck classification, and the results revealed that while several provided satisfactory performance, the VGG16-FineTune provided the optimal performance. This proved the core work feasibility of the proposed FEQS framework. Further discussion provides model choice suggestions that CNN-TL models are more feasible than CNN prototypes, and models that adopt different TL methods have advantages in either working accuracy or speed for different tasks.


2020 ◽  
Vol 7 (8) ◽  
Author(s):  
Erxiao Liu ◽  
Hongqiao Hu ◽  
Jianjun Liu ◽  
Lei Qiao

Sign in / Sign up

Export Citation Format

Share Document