Design and Verification of High-Speed Radix-2 Butterfly FFT Module for DSP Applications

Author(s):  
Utsav Kumar Malviya
Keyword(s):  
Author(s):  
Gourav Jain ◽  
Shaik Rafi Ahamed

In this paper, the authors propose a new systolic array for radix-2, N-point discrete Fourier Transform (DFT) computation based on CORDIC (CO-ordinate Rotation Digital Computer). Complex multiplication can be done by this in a rather simple and elegant way. A CORDIC based multiplier less DFT architecture is designed in order to improve the performance of the system. It is able to provide two transforms per each clock cycle. The proposed design is well suited for high speed DSP-applications.


2016 ◽  
Vol 135 (7) ◽  
pp. 35-38 ◽  
Author(s):  
Arunkumar P. ◽  
Rahul Verma ◽  
Nishanth S.

2021 ◽  
Vol 11 (4) ◽  
pp. 2736-2746
Author(s):  
Kandagatla Ravi Kumar ◽  
Cheeli Priyadarshini ◽  
Kanakam Bhavani ◽  
Ankam Varun Sundar Kumar ◽  
Palanki Naga Nanda Sai

In this Advanced world, Technology is playing the major role. Most importantly development in Electronics field has a large impact on the improved life style. Among the advanced applications, DSP ranks first in place. Multipliers are the most basic elements that are widely used in the Digital Signal Processing (DSP) applications. Therefore, the design of the multiplier is the main factor for the performance of the device. Using RTL simulation and a Field Programmable Gate Array (FPGA), we compare the performance of a serial multiplier with an advanced multiplier. Many single bit adders are removed and replaced with multiplexers in this project. So that the less often used FPGAs are fully used by occupying fewer divisions and slices. The use of multiplier architecture results in significant reductions in FPGA resources, latency, area, and power. These multiplication approaches are created utilizing RTL simulation in Xilinx ISE simulator and synthesis in Xilinx ISE 14.7. Finally, the Spartan 3E FPGA is used to implement the design.


Sign in / Sign up

Export Citation Format

Share Document