Accelerating Deep Learning Tasks with Optimized GPU-assisted Image Decoding

Author(s):  
Lipeng Wang ◽  
Qiong Luo ◽  
Shengen Yan
Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


2021 ◽  
Author(s):  
Marco Luca Sbodio ◽  
Natasha Mulligan ◽  
Stefanie Speichert ◽  
Vanessa Lopez ◽  
Joao Bettencourt-Silva

There is a growing trend in building deep learning patient representations from health records to obtain a comprehensive view of a patient’s data for machine learning tasks. This paper proposes a reproducible approach to generate patient pathways from health records and to transform them into a machine-processable image-like structure useful for deep learning tasks. Based on this approach, we generated over a million pathways from FAIR synthetic health records and used them to train a convolutional neural network. Our initial experiments show the accuracy of the CNN on a prediction task is comparable or better than other autoencoders trained on the same data, while requiring significantly less computational resources for training. We also assess the impact of the size of the training dataset on autoencoders performances. The source code for generating pathways from health records is provided as open source.


2021 ◽  
Author(s):  
Tong Guo

In industry deep learning application, our manually labeled data has a certain number of noisy data. To solve this problem and achieve more than 90 score in dev dataset, we present a simple method to find the noisy data and re-label the noisy data by human, given the model predictions as references in human labeling. In this paper, we illustrate our idea for a broad set of deep learning tasks, includes classification, sequence tagging, object detection, sequence generation, click-through rate prediction. The experimental results and human evaluation results verify our idea.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3929 ◽  
Author(s):  
Grigorios Tsagkatakis ◽  
Anastasia Aidini ◽  
Konstantina Fotiadou ◽  
Michalis Giannopoulos ◽  
Anastasia Pentari ◽  
...  

Deep Learning, and Deep Neural Networks in particular, have established themselves as the new norm in signal and data processing, achieving state-of-the-art performance in image, audio, and natural language understanding. In remote sensing, a large body of research has been devoted to the application of deep learning for typical supervised learning tasks such as classification. Less yet equally important effort has also been allocated to addressing the challenges associated with the enhancement of low-quality observations from remote sensing platforms. Addressing such channels is of paramount importance, both in itself, since high-altitude imaging, environmental conditions, and imaging systems trade-offs lead to low-quality observation, as well as to facilitate subsequent analysis, such as classification and detection. In this paper, we provide a comprehensive review of deep-learning methods for the enhancement of remote sensing observations, focusing on critical tasks including single and multi-band super-resolution, denoising, restoration, pan-sharpening, and fusion, among others. In addition to the detailed analysis and comparison of recently presented approaches, different research avenues which could be explored in the future are also discussed.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Jin Choong ◽  
Xin Liu ◽  
Tsuyoshi Murata

Discovering and modeling community structure exist to be a fundamentally challenging task. In domains such as biology, chemistry, and physics, researchers often rely on community detection algorithms to uncover community structures from complex systems yet no unified definition of community structure exists. Furthermore, existing models tend to be oversimplified leading to a neglect of richer information such as nodal features. Coupled with the surge of user generated information on social networks, a demand for newer techniques beyond traditional approaches is inevitable. Deep learning techniques such as network representation learning have shown tremendous promise. More specifically, supervised and semisupervised learning tasks such as link prediction and node classification have achieved remarkable results. However, unsupervised learning tasks such as community detection remain widely unexplored. In this paper, a novel deep generative model for community detection is proposed. Extensive experiments show that the proposed model, empowered with Bayesian deep learning, can provide insights in terms of uncertainty and exploit nonlinearities which result in better performance in comparison to state-of-the-art community detection methods. Additionally, unlike traditional methods, the proposed model is community structure definition agnostic. Leveraging on low-dimensional embeddings of both network topology and feature similarity, it automatically learns the best model configuration for describing similarities in a community.


Author(s):  
BURCU YILMAZ ◽  
Hilal Genc ◽  
Mustafa Agriman ◽  
Bugra Kaan Demirdover ◽  
Mert Erdemir ◽  
...  

Graphs are powerful data structures that allow us to represent varying relationships within data. In the past, due to the difficulties related to the time complexities of processing graph models, graphs rarely involved machine learning tasks. In recent years, especially with the new advances in deep learning techniques, increasing number of graph models related to the feature engineering and machine learning are proposed. Recently, there has been an increase in approaches that automatically learn to encode graph structure into low dimensional embedding. These approaches are accompanied by models for machine learning tasks, and they fall into two categories. The first one focuses on feature engineering techniques on graphs. The second group of models assembles graph structure to learn a graph neighborhood in the machine learning model. In this chapter, the authors focus on the advances in applications of graphs on NLP using the recent deep learning models.


Author(s):  
Hao Zhu ◽  
Man-Di Luo ◽  
Rui Wang ◽  
Ai-Hua Zheng ◽  
Ran He

AbstractAudio-visual learning, aimed at exploiting the relationship between audio and visual modalities, has drawn considerable attention since deep learning started to be used successfully. Researchers tend to leverage these two modalities to improve the performance of previously considered single-modality tasks or address new challenging problems. In this paper, we provide a comprehensive survey of recent audio-visual learning development. We divide the current audio-visual learning tasks into four different subfields: audio-visual separation and localization, audio-visual correspondence learning, audio-visual generation, and audio-visual representation learning. State-of-the-art methods, as well as the remaining challenges of each subfield, are further discussed. Finally, we summarize the commonly used datasets and challenges.


Author(s):  
Jesse A Livezey ◽  
Joshua I Glaser

Abstract Decoding behavior, perception or cognitive state directly from neural signals is critical for brain–computer interface research and an important tool for systems neuroscience. In the last decade, deep learning has become the state-of-the-art method in many machine learning tasks ranging from speech recognition to image segmentation. The success of deep networks in other domains has led to a new wave of applications in neuroscience. In this article, we review deep learning approaches to neural decoding. We describe the architectures used for extracting useful features from neural recording modalities ranging from spikes to functional magnetic resonance imaging. Furthermore, we explore how deep learning has been leveraged to predict common outputs including movement, speech and vision, with a focus on how pretrained deep networks can be incorporated as priors for complex decoding targets like acoustic speech or images. Deep learning has been shown to be a useful tool for improving the accuracy and flexibility of neural decoding across a wide range of tasks, and we point out areas for future scientific development.


Sign in / Sign up

Export Citation Format

Share Document