scholarly journals Variational Approach for Learning Community Structures

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Jin Choong ◽  
Xin Liu ◽  
Tsuyoshi Murata

Discovering and modeling community structure exist to be a fundamentally challenging task. In domains such as biology, chemistry, and physics, researchers often rely on community detection algorithms to uncover community structures from complex systems yet no unified definition of community structure exists. Furthermore, existing models tend to be oversimplified leading to a neglect of richer information such as nodal features. Coupled with the surge of user generated information on social networks, a demand for newer techniques beyond traditional approaches is inevitable. Deep learning techniques such as network representation learning have shown tremendous promise. More specifically, supervised and semisupervised learning tasks such as link prediction and node classification have achieved remarkable results. However, unsupervised learning tasks such as community detection remain widely unexplored. In this paper, a novel deep generative model for community detection is proposed. Extensive experiments show that the proposed model, empowered with Bayesian deep learning, can provide insights in terms of uncertainty and exploit nonlinearities which result in better performance in comparison to state-of-the-art community detection methods. Additionally, unlike traditional methods, the proposed model is community structure definition agnostic. Leveraging on low-dimensional embeddings of both network topology and feature similarity, it automatically learns the best model configuration for describing similarities in a community.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


2016 ◽  
Vol 35 (2) ◽  
pp. 244-261 ◽  
Author(s):  
Frederic Guerrero-Solé

In November 9, 2014, the Catalan government called Catalan people to participate in a straw poll about the independence of Catalonia from Spain. This article analyzes the use of Twitter between November 8 and 10, 2014. Drawing on a methodology developed by Guerrero-Solé, Corominas-Murtra, and Lopez-Gonzalez, this work examines the structure of the retweet overlap network (RON), formed by those users whose communities of retweeters have nonzero overlapping, to detect the community structure of the network. The results show a high polarization of the resulting network and prove that the RON is a reliable method to determinate network community structures and users’ political leaning in political discussions.


Author(s):  
Guishen Wang ◽  
Kaitai Wang ◽  
Hongmei Wang ◽  
Huimin Lu ◽  
Xiaotang Zhou ◽  
...  

Local community detection algorithms are an important type of overlapping community detection methods. Local community detection methods identify local community structure through searching seeds and expansion process. In this paper, we propose a novel local community detection method on line graph through degree centrality and expansion (LCDDCE). We firstly employ line graph model to transfer edges into nodes of a new graph. Secondly, we evaluate edges relationship through a novel node similarity method on line graph. Thirdly, we introduce local community detection framework to identify local node community structure of line graph, combined with degree centrality and PageRank algorithm. Finally, we transfer them back into original graph. The experimental results on three classical benchmarks show that our LCDDCE method achieves a higher performance on normalized mutual information metric with other typical methods.


Author(s):  
Hedi Ben-younes ◽  
Remi Cadene ◽  
Nicolas Thome ◽  
Matthieu Cord

Multimodal representation learning is gaining more and more interest within the deep learning community. While bilinear models provide an interesting framework to find subtle combination of modalities, their number of parameters grows quadratically with the input dimensions, making their practical implementation within classical deep learning pipelines challenging. In this paper, we introduce BLOCK, a new multimodal fusion based on the block-superdiagonal tensor decomposition. It leverages the notion of block-term ranks, which generalizes both concepts of rank and mode ranks for tensors, already used for multimodal fusion. It allows to define new ways for optimizing the tradeoff between the expressiveness and complexity of the fusion model, and is able to represent very fine interactions between modalities while maintaining powerful mono-modal representations. We demonstrate the practical interest of our fusion model by using BLOCK for two challenging tasks: Visual Question Answering (VQA) and Visual Relationship Detection (VRD), where we design end-to-end learnable architectures for representing relevant interactions between modalities. Through extensive experiments, we show that BLOCK compares favorably with respect to state-of-the-art multimodal fusion models for both VQA and VRD tasks. Our code is available at https://github.com/Cadene/block.bootstrap.pytorch.


2014 ◽  
Vol 28 (28) ◽  
pp. 1450199
Author(s):  
Shengze Hu ◽  
Zhenwen Wang

In the real world, a large amount of systems can be described by networks where nodes represent entities and edges the interconnections between them. Community structure in networks is one of the interesting properties revealed in the study of networks. Many methods have been developed to extract communities from networks using the generative models which give the probability of generating networks based on some assumption about the communities. However, many generative models require setting the number of communities in the network. The methods based on such models are lack of practicality, because the number of communities is unknown before determining the communities. In this paper, the Bayesian nonparametric method is used to develop a new community detection method. First, a generative model is built to give the probability of generating the network and its communities. Next, the model parameters and the number of communities are calculated by fitting the model to the actual network. Finally, the communities in the network can be determined using the model parameters. In the experiments, we apply the proposed method to the synthetic and real-world networks, comparing with some other community detection methods. The experimental results show that the proposed method is efficient to detect communities in networks.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 739 ◽  
Author(s):  
Jin-Young Kim ◽  
Sung-Bae Cho

As energy demand grows globally, the energy management system (EMS) is becoming increasingly important. Energy prediction is an essential component in the first step to create a management plan in EMS. Conventional energy prediction models focus on prediction performance, but in order to build an efficient system, it is necessary to predict energy demand according to various conditions. In this paper, we propose a method to predict energy demand in various situations using a deep learning model based on an autoencoder. This model consists of a projector that defines an appropriate state for a given situation and a predictor that forecasts energy demand from the defined state. The proposed model produces consumption predictions for 15, 30, 45, and 60 minutes with 60-minute demand to date. In the experiments with household electric power consumption data for five years, this model not only has a better performance with a mean squared error of 0.384 than the conventional models, but also improves the capacity to explain the results of prediction by visualizing the state with t-SNE algorithm. Despite unsupervised representation learning, we confirm that the proposed model defines the state well and predicts the energy demand accordingly.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Jianjun Cheng ◽  
Xing Su ◽  
Haijuan Yang ◽  
Longjie Li ◽  
Jingming Zhang ◽  
...  

Community structures can reveal organizations and functional properties of complex networks; hence, detecting communities from networks is of great importance. With the surge of large networks in recent years, the efficiency of community detection is demanded critically. Therefore, many local methods have emerged. In this paper, we propose a node similarity based community detection method, which is also a local one consisted of two phases. In the first phase, we first take out the node with the largest degree from the network to take it as an exemplar of the first community and insert its most similar neighbor node into the community as well. Then, the one with the largest degree in the remainder nodes is selected; if its most similar neighbor has not been classified into any community yet, we create a new community for the selected node and its most similar neighbor. Otherwise, if its most similar neighbor has been classified into a certain community, we insert the selected node into the community to which its most similar neighbor belongs. This procedure is repeated until every node in the network is assigned to a community; at that time, we obtain a series of preliminary communities. However, some of them might be too small or too sparse; edges connecting to outside of them might go beyond the ones inside them. Keeping them as the final ones will lead to a low-quality community structure. Therefore, we merge some of them in an efficient approach in the second phase to improve the quality of the resulting community structure. To testify the performance of our proposed method, extensive experiments are performed on both some artificial networks and some real-world networks. The results show that the proposed method can detect high-quality community structures from networks steadily and efficiently and outperform the comparison algorithms significantly.


2020 ◽  
Vol 8 (1) ◽  
pp. 1-41 ◽  
Author(s):  
Vinh Loc Dao ◽  
Cécile Bothorel ◽  
Philippe Lenca

AbstractDiscovering community structure in complex networks is a mature field since a tremendous number of community detection methods have been introduced in the literature. Nevertheless, it is still very challenging for practitioners to determine which method would be suitable to get insights into the structural information of the networks they study. Many recent efforts have been devoted to investigating various quality scores of the community structure, but the problem of distinguishing between different types of communities is still open. In this paper, we propose a comparative, extensive, and empirical study to investigate what types of communities many state-of-the-art and well-known community detection methods are producing. Specifically, we provide comprehensive analyses on computation time, community size distribution, a comparative evaluation of methods according to their optimization schemes as well as a comparison of their partitioning strategy through validation metrics. We process our analyses on a very large corpus of hundreds of networks from five different network categories and propose ways to classify community detection methods, helping a potential user to navigate the complex landscape of community detection.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Mei Chen ◽  
Zhichong Yang ◽  
Xiaofang Wen ◽  
Mingwei Leng ◽  
Mei Zhang ◽  
...  

Community detection is helpful to understand useful information in real-world networks by uncovering their natural structures. In this paper, we propose a simple but effective community detection algorithm, called ACC, which needs no heuristic search but has near-linear time complexity. ACC defines a novel similarity which is different from most common similarity definitions by considering not only common neighbors of two adjacent nodes but also their mutual exclusive degree. According to this similarity, ACC groups nodes together to obtain the initial community structure in the first step. In the second step, ACC adjusts the initial community structure according to cores discovered through a new local density which is defined as the influence of a node on its neighbors. The third step expands communities to yield the final community structure. To comprehensively demonstrate the performance of ACC, we compare it with seven representative state-of-the-art community detection algorithms, on small size networks with ground-truth community structures and relatively big-size networks without ground-truth community structures. Experimental results show that ACC outperforms the seven compared algorithms in most cases.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fangyuan Lei ◽  
Xun Liu ◽  
Qingyun Dai ◽  
Bingo Wing-Kuen Ling ◽  
Huimin Zhao ◽  
...  

With the higher-order neighborhood information of a graph network, the accuracy of graph representation learning classification can be significantly improved. However, the current higher-order graph convolutional networks have a large number of parameters and high computational complexity. Therefore, we propose a hybrid lower-order and higher-order graph convolutional network (HLHG) learning model, which uses a weight sharing mechanism to reduce the number of network parameters. To reduce the computational complexity, we propose a novel information fusion pooling layer to combine the high-order and low-order neighborhood matrix information. We theoretically compare the computational complexity and the number of parameters of the proposed model with those of the other state-of-the-art models. Experimentally, we verify the proposed model on large-scale text network datasets using supervised learning and on citation network datasets using semisupervised learning. The experimental results show that the proposed model achieves higher classification accuracy with a small set of trainable weight parameters.


Sign in / Sign up

Export Citation Format

Share Document