Design and Development of Digital Signal Controller based Motorized Zoom Controller for 16X Zoom Thermal Imager

Author(s):  
Himanshu Singh ◽  
Millie Pant ◽  
Sudhir Khare ◽  
Ranabir Mandal ◽  
Kanchan Chandra ◽  
...  
Author(s):  
P. Geethanjali

This chapter discusses design and development of a surface Electromyogram (EMG) signal detection and conditioning system along with the issues of gratuitous spurious signals such as power line interference, artifacts, etc., which make signals plausible. In order to construe the recognition of hand gestures from EMG signals, Time Domain (TD) and well as Autoregressive (AR) coefficients features are extracted. The extracted features are diminished using the Principal Component Analysis (PCA) to alleviate the burden of the classifier. A four-channel continuous EMG signal conditioning system is developed and EMG signals are acquired from 10 able-bodied subjects to classify the 6 unique movements of hand and wrist. The reduced statistical TD and AR features are used to classify the signal patterns through k Nearest Neighbour (kNN) as well as Neural Network (NN) classifier. Further, EMG signals acquired from a transradial amputee using 8-channel systems for the 6 amenable motions are also classified. Statistical Analysis of Variance (ANOVA) results on classification performance of able-bodied subject divulge that the performance TD-PCA features are more significant than the AR-PCA features. Further, no significant difference in the performance of NN classifier and kNN classifier is construed with TD reduced features. Since the average classification error of kNN classifier with TD features is found to be less, kNN classifier is implemented in off-line using the TMS2407eZdsp digital signal controller to study the actuation of three low-power DC drives in the identification of intended motion with an able-bodied subject.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5945 ◽  
Author(s):  
Ryszard Beniak ◽  
Krzysztof Górecki ◽  
Piotr Paduch ◽  
Krzysztof Rogowski

The aim of this paper is to present the real-time implementation and measurements of a reduced switch count in space vector pulse width modulation for three-level neutral point clamped inverters (3L-NPC). We implement space vector pulse width modulation, which uses a prediction algorithm to reduce the number of switches in power transistors (switch count) by up to about 13%. The algorithm applies additional redundant voltage vectors. The method is compute-intensive and was implemented on a dual-core TMS320F28379D digital signal controller. The latest measurements of steady and dynamic states of electric drive, powered by a 3L-NPC inverter using this method, confirmed the possibility of using this method in practical implementation. The implementation and results of the measurements are presented in this paper.


2013 ◽  
Vol 462-463 ◽  
pp. 788-793
Author(s):  
Shan Yun Huang ◽  
Zhao Bo Chen ◽  
Feng Chen Tu

A novel intelligent driver based on digital signal controller (DSC) has been put forward for magneto-rheological (MR) damper. The working principles of MR damper were described, as well as the hardware circuit scheme of signal condition and MR damper driver etc. on account of TMS320F28335 DSC. A hierarchical control algorithm was designed and the studies for the performance of the driver were conducted. The results suggest that the driver could provide accurate drive current for MR damper, and meanwhile the respond time is less than 2ms, which can meet the drive requirements of MR damper.


Sign in / Sign up

Export Citation Format

Share Document