scholarly journals One-way travel-time inverted ultra-short baseline localization for low-cost autonomous underwater vehicles

Author(s):  
Nicholas R. Rypkema ◽  
Erin M. Fischell ◽  
Henrik Schmidt
Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 682 ◽  
Author(s):  
Shilin Peng ◽  
Jingbiao Liu ◽  
Junhao Wu ◽  
Chong Li ◽  
Benkun Liu ◽  
...  

As important observational platforms for the Smart Ocean concept, autonomous underwater vehicles (AUVs) that perform long-term observation in fleets are beneficial because they provide large-scale sampling data with a sufficient spatiotemporal resolution. Therefore, a large number of low-cost micro AUVs with docking capability for power recharge and data transmission are essential. This study designed a low-cost electromagnetic docking guidance (EMDG) system for micro AUVs. The EMDG system is composed of a transmitter coil located on the dock and a three-axial search coil magnetometer acting as a receiver. The search coil magnetometer was optimized for small sizes while maintaining sufficient sensitivity. The signal conditioning and processing subsystem was designed to calculate the deflection angle (β) for docking guidance. Underwater docking tests showed that the system can detect the electromagnetic signal and successfully guide AUV docking. The AUV can still perform docking in extreme positions, which cannot be realized through normal optical or acoustic guidance. This study is the first to focus on the EM guidance system for low-cost micro AUVs. The search coil sensor in the AUV is inexpensive and compact so that the system can be equipped on a wide range of AUVs.


2008 ◽  
Vol 42 (4) ◽  
pp. 4-11 ◽  
Author(s):  
Michael Laszlo Incze

The requirements to rapidly characterize environmental conditions in dynamic near-shore waters have greatly outpaced the developing inventory of traditional resources to conduct this sampling. Research vessels, remote sensors, and networked in situ sensing platforms (fixed and drifting) are often limited in availability, capability, and/or adaptability, with the result that surveys can not be rapidly conducted in areas of immediate concern to communities, industry, and military defense. Autonomous underwater vehicles (AUVs) have been evolving over the past decade, with the ability to provide rapid environmental assessment as one of the primary objectives. However, the trade-off of cost and capability limited early designs and prohibited broad and effective utilization of these platforms for environmental data-collection missions. AUVs capable of sustained performance for sampling dynamic parameters in areas of high spatial and temporal variability were too costly, both in terms of procurement and operation, and lower cost AUVs did not have sufficient performance for operating in these challenging near-shore conditions. The development of low-cost, lightweight vehicles for these missions has only recently occurred, enabling responsive, multi-platform surveys to capture synoptic characterizations of near-shore waters with sufficient resolution to support data-centric 3-D models and provide baseline data sets for development and validation of physics-based forecasting models. Recent survey operations with one candidate class of AUVs developed by OceanServer Technology, Inc. reveal the hardware/software status of state-of-the-art designs and provide a basis for developing survey strategies essential to effective mission planning.


2003 ◽  
Vol 60 (3) ◽  
pp. 684-691 ◽  
Author(s):  
Paul G Fernandes ◽  
Pete Stevenson ◽  
Andrew S Brierley ◽  
Frederick Armstrong ◽  
E.John Simmonds

Abstract Autonomous underwater vehicles (AUVs) are unmanned submersibles that can be pre-programmed to navigate in three dimensions under water. The technological advances required for reliable deployment, mission control, performance, and recovery of AUVs have developed considerably over the past 10 years. Currently, there are several vehicles operating successfully in the offshore industries as well as in the applied and academic oceanographic sciences. This article reviews the application of AUVs to fisheries- and plankton-acoustics research. Specifications of the main AUVs currently in operation are given. Compared to traditional platforms for acoustic instruments, AUVs can sample previously impenetrable environments such as the sea surface, the deep sea, and under-sea ice. Furthermore, AUVs are typically small, quiet, and have the potential to operate at low cost and be unconstrained by the vagaries of weather. Examples of how these traits may be utilized in fisheries-acoustics science are given with reference to previous work in the North Sea and Southern Ocean and to potential future applications. Concurrent advances in multi-beam sonar technology and species identification, using multi-frequency and broadband sonars, will further enhance the utility of AUVs for fisheries acoustics. However, before many of the more prospective applications can be accomplished, advances in power-source technology are required to increase the range of operation. The paper ends by considering developments that may turn AUVs from objects sometimes perceived as science fiction into instruments used routinely to gather scientific facts.


Sensors ◽  
2017 ◽  
Vol 17 (4) ◽  
pp. 680 ◽  
Author(s):  
Ling Zhou ◽  
Xianghong Cheng ◽  
Yixian Zhu ◽  
Chenxi Dai ◽  
Jinbo Fu

2020 ◽  
Vol 8 (6) ◽  
pp. 413
Author(s):  
Đula Nađ ◽  
Filip Mandić ◽  
Nikola Mišković

SCUBA diving activities are classified as high-risk due to the dangerous environment, dependency on technical equipment that ensures life support, reduced underwater navigation and communication capabilities all of which compromise diver safety. While autonomous underwater vehicles (AUVs) have become irreplaceable tools for seabed exploration, monitoring, and mapping in various applications, they still lack the higher cognitive capabilities offered by a human diver. The research presented in this paper was carried out under the EU FP7 “CADDY—Cognitive Autonomous Diving Buddy”. It aims to take advantage of both human diver and AUV complementary traits by making their synergy a potential solution for mitigation of state of the art diving challenges. The AUV increases diver safety by constantly observing the diver, provides navigation aiding by directing the diver and offers assistance (e.g., lights, tool fetching, etc.). The control algorithms proposed in the paper provide a foundation for implementing these services. These algorithms use measurements from stereo-camera, sonar and ultra-short baseline acoustic localization to ensure the vehicle constantly follows and observes the diver. Additionally, the vehicle maintains a relative formation with the diver to allow observation from multiple viewpoints and to aid underwater navigation by pointing towards the next point of interest. Performance of the proposed algorithms is evaluated using results from pool experiments.


Sign in / Sign up

Export Citation Format

Share Document