Detection for Cutting Tool Wear Based on Convolution Neural Networks

Author(s):  
Yue Wang ◽  
Wei Dai ◽  
Jianglin Xiao
2014 ◽  
Vol 611-612 ◽  
pp. 452-459 ◽  
Author(s):  
Giovenco Axel ◽  
Frédéric Valiorgue ◽  
Cédric Courbon ◽  
Joël Rech ◽  
Ugo Masciantonio

The present work is motivated by the will to improve Finite Element (FE) Modelling of cutting tool wear. As a first step, the characterisation of wear mechanisms and identification of a wear model appear to be fundamental. The key idea of this work consists in using a dedicated tribometer, able to simulate relevant tribological conditions encountered in cutting (pressure, velocity). The tribometer can be used to estimate the evolution of wear versus time for various tribological conditions (pressure, velocity, temperature). Based on this design of experiments, it becomes possible to identify analytically a wear model. As a preliminary study this paper will be focused on the impact of sliding speed at the contact interface between 304L stainless steel and tungsten carbide (WC) coated with titanium nitride (TiN) pin. This experiment enables to observe a modification of wear phenomena between sliding speeds of 60 m/min and 180 m/min. Finally, the impact on macroscopic parameters has been observed.


1989 ◽  
Vol 111 (3) ◽  
pp. 199-205 ◽  
Author(s):  
S. Y. Liang ◽  
D. A. Dornfeld

This paper discusses the monitoring of cutting tool wear based on time series analysis of acoustic emission signals. In cutting operations, acoustic emission provides useful information concerning the tool wear condition because of the fundamental differences between its source mechanisms in the rubbing friction on the wear land and the dislocation action in the shear zones. In this study, a signal processing scheme is developed which uses an autoregressive time-series to model the acoustic emission generated during cutting. The modeling scheme is implemented with a stochastic gradient algorithm to update the model parameters adoptively and is thus a suitable candidate for in-process sensing applications. This technique encodes the acoustic emission signal features into a time varying model parameter vector. Experiments indicate that the parameter vector ignores the change of cutting parameters, but shows a strong sensitivity to the progress of cutting tool wear. This result suggests that tool wear detection can be achieved by monitoring the evolution of the model parameter vector during machining processes.


Wear ◽  
2001 ◽  
Vol 247 (2) ◽  
pp. 152-160 ◽  
Author(s):  
J Barry ◽  
G Byrne

2015 ◽  
Vol 15 (3) ◽  
pp. 380-384 ◽  
Author(s):  
Jan Madl ◽  
Michal Martinovsky

2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


Author(s):  
Zhi-An Shen ◽  
Jiangfeng Cheng ◽  
Chieh-Tse Tang ◽  
Chun-Liang Lin ◽  
Chia-Feng Juang

2019 ◽  
Vol 299 ◽  
pp. 04003
Author(s):  
Juraj Kundrík ◽  
Marek Kočiško ◽  
Martin Pollák ◽  
Monika Telišková ◽  
Anna Bašistová ◽  
...  

Modern CNC machine tools include a number of sensors that collect machine status data. These data are used to control the production process and for control of the CNC machine status. No less importantpart of the production process is also a machine tool. The condition of the cutting tool is important for the production quality and its failure can cause serious problems. Monitoring the condition of thecutting tool is complicated due to its dimensions and working conditions. The article describes how the tool wear can be predicted from the measured values of vibration and pressure by using neural networks.


Sign in / Sign up

Export Citation Format

Share Document