Helmet Detection Using Faster Region-Based Convolutional Neural Networks and Single-Shot MultiBox Detector

Author(s):  
Prajval Mohan ◽  
Pranav Narayan ◽  
Lakshya Sharma ◽  
M. Anand
2021 ◽  
Author(s):  
shrikant pawar ◽  
Aditya Stanam ◽  
Rushikesh Chopade

Bounding box algorithms are useful in localization of image patterns. Recently, utilization of convolutional neural networks on X-ray images has proven a promising disease prediction technique. However, pattern localization over prediction has always been a challenging task with inconsistent coordinates, sizes, resolution and capture positions of an image. Several model architectures like Fast R-CNN, Faster R-CNN, Histogram of Oriented Gradients (HOG), You only look once (YOLO), Region-based Convolutional Neural Networks (R-CNN), Region-based Fully Convolutional Networks (R-FCN), Single Shot Detector (SSD), etc. are used for object detection and localization in modern-day computer vision applications. SSD and region-based detectors like Fast R-CNN or Faster R-CNN are very similar in design and implementation, but SSD have shown to work efficiently with larger frames per second (FPS) and lower resolution images. In this article, we present a unique approach of SSD with a VGG-16 network as a backbone for feature detection of bounding box algorithm to predict the location of an anomaly within chest X-ray image.


Author(s):  
Ashwani Kumar ◽  
Zuopeng Justin Zhang ◽  
Hongbo Lyu

Abstract In today’s scenario, the fastest algorithm which uses a single layer of convolutional network to detect the objects from the image is single shot multi-box detector (SSD) algorithm. This paper studies object detection techniques to detect objects in real time on any device running the proposed model in any environment. In this paper, we have increased the classification accuracy of detecting objects by improving the SSD algorithm while keeping the speed constant. These improvements have been done in their convolutional layers, by using depth-wise separable convolution along with spatial separable convolutions generally called multilayer convolutional neural networks. The proposed method uses these multilayer convolutional neural networks to develop a system model which consists of multilayers to classify the given objects into any of the defined classes. The schemes then use multiple images and detect the objects from these images, labeling them with their respective class label. To speed up the computational performance, the proposed algorithm is applied along with the multilayer convolutional neural network which uses a larger number of default boxes and results in more accurate detection. The accuracy in detecting the objects is checked by different parameters such as loss function, frames per second (FPS), mean average precision (mAP), and aspect ratio. Experimental results confirm that our proposed improved SSD algorithm has high accuracy.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 360
Author(s):  
Aihua Chen ◽  
Benquan Yang ◽  
Yueli Cui ◽  
Yuefen Chen ◽  
Shiqing Zhang ◽  
...  

In order to save people’s shopping time and reduce labor cost of supermarket operations, this paper proposes to design a supermarket service robot based on deep convolutional neural networks (DCNNs). Firstly, according to the shopping environment and needs of supermarket, the hardware and software structure of supermarket service robot is designed. The robot uses a robot operating system (ROS) middleware on Raspberry PI as a control kernel to implement wireless communication with customers and staff. So as to move flexibly, the omnidirectional wheels symmetrically installed under the robot chassis are adopted for tracking. The robot uses an infrared detection module to detect whether there are commodities in the warehouse or shelves or not, thereby grasping and placing commodities accurately. Secondly, the recently-developed single shot multibox detector (SSD), as a typical DCNN model, is employed to detect and identify objects. Finally, in order to verify robot performance, a supermarket environment is designed to simulate real-world scenario for experiments. Experimental results show that the designed supermarket service robot can automatically complete the procurement and replenishment of commodities well and present promising performance on commodity detection and recognition tasks.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3718 ◽  
Author(s):  
Hieu Nguyen ◽  
Yuzeng Wang ◽  
Zhaoyang Wang

Single-shot 3D imaging and shape reconstruction has seen a surge of interest due to the ever-increasing evolution in sensing technologies. In this paper, a robust single-shot 3D shape reconstruction technique integrating the structured light technique with the deep convolutional neural networks (CNNs) is proposed. The input of the technique is a single fringe-pattern image, and the output is the corresponding depth map for 3D shape reconstruction. The essential training and validation datasets with high-quality 3D ground-truth labels are prepared by using a multi-frequency fringe projection profilometry technique. Unlike the conventional 3D shape reconstruction methods which involve complex algorithms and intensive computation to determine phase distributions or pixel disparities as well as depth map, the proposed approach uses an end-to-end network architecture to directly carry out the transformation of a 2D image to its corresponding 3D depth map without extra processing. In the approach, three CNN-based models are adopted for comparison. Furthermore, an accurate structured-light-based 3D imaging dataset used in this paper is made publicly available. Experiments have been conducted to demonstrate the validity and robustness of the proposed technique. It is capable of satisfying various 3D shape reconstruction demands in scientific research and engineering applications.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2393 ◽  
Author(s):  
Daniel Octavian Melinte ◽  
Luige Vladareanu

The interaction between humans and an NAO robot using deep convolutional neural networks (CNN) is presented in this paper based on an innovative end-to-end pipeline method that applies two optimized CNNs, one for face recognition (FR) and another one for the facial expression recognition (FER) in order to obtain real-time inference speed for the entire process. Two different models for FR are considered, one known to be very accurate, but has low inference speed (faster region-based convolutional neural network), and one that is not as accurate but has high inference speed (single shot detector convolutional neural network). For emotion recognition transfer learning and fine-tuning of three CNN models (VGG, Inception V3 and ResNet) has been used. The overall results show that single shot detector convolutional neural network (SSD CNN) and faster region-based convolutional neural network (Faster R-CNN) models for face detection share almost the same accuracy: 97.8% for Faster R-CNN on PASCAL visual object classes (PASCAL VOCs) evaluation metrics and 97.42% for SSD Inception. In terms of FER, ResNet obtained the highest training accuracy (90.14%), while the visual geometry group (VGG) network had 87% accuracy and Inception V3 reached 81%. The results show improvements over 10% when using two serialized CNN, instead of using only the FER CNN, while the recent optimization model, called rectified adaptive moment optimization (RAdam), lead to a better generalization and accuracy improvement of 3%-4% on each emotion recognition CNN.


2020 ◽  
Vol 12 (14) ◽  
pp. 2240
Author(s):  
Kinga Reda ◽  
Michal Kedzierski

With the development of effective deep learning algorithms, it became possible to achieve high accuracy when conducting remote sensing analyses on very high-resolution images (VHRS), especially in the context of building detection and classification. In this article, in order to improve the accuracy of building detection and classification, we propose a Faster Edge Region Convolutional Neural Networks (FER-CNN) algorithm. This proposed algorithm is trained and evaluated on different datasets. In addition, we propose a new method to improve the detection of the boundaries of detected buildings. The results of our algorithm are compared with those of other methods, such as classical Faster Region Convolution Neural Network (Faster R-CNN) with the original VGG16 and the Single-Shot Multibox Detector (SSD). The experimental results show that our methods make it possible to obtain an average detection accuracy of 97.5% with a false positive classification rate of 8.4%. An additional advantage of our method is better resistance to shadows, which is a very common issue for satellite images of urban areas. Future research will include designing and training the neural network to detect small buildings, as well as irregularly shaped buildings that are partially obscured by shadows or other occlusions.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3111 ◽  
Author(s):  
Jing Pan ◽  
Hanqing Sun ◽  
Zhanjie Song ◽  
Jungong Han

Downsampling input images is a simple trick to speed up visual object-detection algorithms, especially on robotic vision and applied mobile vision systems. However, this trick comes with a significant decline in accuracy. In this paper, dual-resolution dual-path Convolutional Neural Networks (CNNs), named DualNets, are proposed to bump up the accuracy of those detection applications. In contrast to previous methods that simply downsample the input images, DualNets explicitly take dual inputs in different resolutions and extract complementary visual features from these using dual CNN paths. The two paths in a DualNet are a backbone path and an auxiliary path that accepts larger inputs and then rapidly downsamples them to relatively small feature maps. With the help of the carefully designed auxiliary CNN paths in DualNets, auxiliary features are extracted from the larger input with controllable computation. Auxiliary features are then fused with the backbone features using a proposed progressive residual fusion strategy to enrich feature representation.This architecture, as the feature extractor, is further integrated with the Single Shot Detector (SSD) to accomplish latency-sensitive visual object-detection tasks. We evaluate the resulting detection pipeline on Pascal VOC and MS COCO benchmarks. Results show that the proposed DualNets can raise the accuracy of those CNN detection applications that are sensitive to computation payloads.


Sign in / Sign up

Export Citation Format

Share Document