A surface plasmon resonance(SPR)sensor chip integrating prism array based on polymer microfabrication

Author(s):  
Zhao-xin Geng ◽  
Xu Ji ◽  
Xia Lou ◽  
Qing Li ◽  
Wei Wang ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1928 ◽  
Author(s):  
Nur Omar ◽  
Yap Fen ◽  
Silvan Saleviter ◽  
Wan Daniyal ◽  
Nur Anas ◽  
...  

The emergence of unintentional poisoning and uncontrolled vector diseases have contributed to sensor technologies development, leading to the more effective detection of diseases. In this study, we present the combination of graphene-based material with surface plasmon resonance technique. Two different graphene-based material sensor chips were prepared for rapid and quantitative detection of dengue virus (DENV) and cobalt ion (Co2+) as an example of typical metal ions. As the fundamental concept of surface plasmon resonance (SPR) sensor that relies on the refractive index of the sensor chip surface, this research focused on the SPR signal when the DENV and Co2+ interact with the graphene-based material sensor chip. The results demonstrated that the proposed sensor-based graphene layer was able to detect DENV and Co2+ as low as 0.1 pM and 0.1 ppm respectively. Further details in the detection and quantification of analyte were also discussed in terms of sensitivity, affinity, and selectivity of the sensor.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1516
Author(s):  
Lian Liu ◽  
Shijie Deng ◽  
Jie Zheng ◽  
Libo Yuan ◽  
Hongchang Deng ◽  
...  

An enhanced plastic optical fiber (POF)-based surface plasmon resonance (SPR) sensor is proposed by employing a double-sided polished structure. The sensor is fabricated by polishing two sides of the POF symmetrically along with the fiber axis, and a layer of Au film is deposited on each side of the polished region. The SPR can be excited on both polished surfaces with Au film coating, and the number of light reflections will be increased by using this structure. The simulation and experimental results show that the proposed sensor has an enhanced SPR effect. The visibility and full width at half maximum (FWHM) of spectrum can be improved for the high measured refractive index (RI). A sensitivity of 4284.8 nm/RIU is obtained for the double-sided POF-based SPR sensor when the measured liquid RI is 1.42. The proposed SPR sensor is easy fabrication and low cost, which can provide a larger measurement range and action area to the measured samples, and it has potential application prospects in the oil industry and biochemical sensing fields.


2021 ◽  
Vol 1147 ◽  
pp. 23-29
Author(s):  
Chutiparn Lertvachirapaiboon ◽  
Akira Baba ◽  
Kazunari Shinbo ◽  
Keizo Kato

Biosensors ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Duygu Çimen ◽  
Nilay Bereli ◽  
Adil Denizli

In this study, we designed a simple, rapid, sensitive and selective surface plasmon resonance (SPR) sensor for detection of L-phenylalaine by utilizing molecular imprinting technology. l-phenylalanine imprinted and non-imprinted poly(2-hydroxyethyl methacrylate-methacryloyl-l-phenylalanine) polymeric films were synthesized onto SPR chip surfaces using ultraviolet polymerization. l-phenyalanine imprinted and non-imprinted SPR sensors were characterized by using contact angle, atomic force microscopy and ellipsometry. After characterization studies, kinetic studies were carried out in the concentration range of 5.0–400.0 μM. The limit of detection and quantification were obtained as 0.0085 and 0.0285 μM, respectively. The response time for the test including equilibration, adsorption and desorption was approximately 9 min. The selectivity studies of the l-phenylalanine imprinted SPR sensor was performed in the presence of d-phenylalanine and l-tryptophan. Validation studies were carried out via enzyme-linked immunosorbent analysis technique in order to demonstrate the applicability and superiority of the l-phenylalanine imprinted SPR sensor.


2021 ◽  
Vol 11 (7) ◽  
pp. 2963
Author(s):  
Nur Alia Sheh Omar ◽  
Yap Wing Fen ◽  
Irmawati Ramli ◽  
Umi Zulaikha Mohd Azmi ◽  
Hazwani Suhaila Hashim ◽  
...  

A novel vanadium–cellulose composite thin film-based on angular interrogation surface plasmon resonance (SPR) sensor for ppb-level detection of Ni(II) ion was developed. Experimental results show that the sensor has a linear response to the Ni(II) ion concentrations in the range of 2–50 ppb with a determination coefficient (R2) of 0.9910. This SPR sensor can attain a maximum sensitivity (0.068° ppb−1), binding affinity constant (1.819 × 106 M−1), detection accuracy (0.3034 degree−1), and signal-to-noise-ratio (0.0276) for Ni(II) ion detection. The optical properties of thin-film targeting Ni(II) ions in different concentrations were obtained by fitting the SPR reflectance curves using the WinSpall program. All in all, the proposed Au/MPA/V–CNCs–CTA thin-film-based surface plasmon resonance sensor exhibits better sensing performance than the previous film-based sensor and demonstrates a wide and promising technology candidate for environmental monitoring applications in the future.


2021 ◽  
Author(s):  
◽  
Roshni Satheesh Babu

<p><b>Surface plasmon resonance (SPR) sensing is a label−free and rapid detection method and has extensive applications in the field of medical diagnostics, food control, and environmental monitoring. However, the lack of sensitivity to detect small molecules is a continuing concern in the application of this technique. Past research has explored different plasmonic structures such as metal nanoparticles, metallic nanoslits, nanoholes, colloidal Au nanoparticles, 2D nanomaterials, and multilayer structures as the sensing layer to improve the sensitivity of these sensors. However, the sensitivity improvement could be realised only with the cost of the increased complexity of optical configuration and sensor chip fabrication. Silver (Ag) is a very good candidate as the metallic layer for the sensor chip due to its higher electrical conductivity as compared to gold (Au). Besides cost−effectiveness, Ag thin film based sensors have better sensitivity with a sharp resonance dip and a high signal−to−noise ratio. However, the poor chemical stability of Ag thin films prevents their use in practical applications. Noble metals such as Au and platinum (Pt) offer greatly enhanced chemical stability. This work investigated the development of SPR sensors composed of a silver−noble metal bilayer structure to utilize both the sensitivity of silver and the chemical stability of the noble metal.</b></p> <p>To enable this research, an automated experimental SPR testbed for sensor characterisation was designed and constructed. This testbed is based on the Kretschmann configuration, using a He−Ne laser source at 632.8 nm. SPR sensor consisting of multilayer metal structures was fabricated using standard microelectronic fabrication techniques.</p> <p>The influence of the relative thickness of a noble metal capping layer on the SPR response and sensitivity from the Ag layer was systematically optimised, using both theoretical and experimental approaches. A theoretical analysis of the performance of the bimetallic SPR sensors was done using the transfer matrix method (TMM) by assuming a five−layer configuration. In the case of an Au capping layer, these simulations indicate an optimised thickness of 45 nm for Ag and 5 nm for Au. The observation from experimental analysis of different thickness combinations of Ag and Au matched the simulated results. However, the results of the stability studies exclude the practical use of 45 nm Ag/5 nm Au structures, as long−term degradation of the Ag layer occurs. A structure of 40 nm Ag/10nm Au was thus selected as the best composition for sensor applications. It is showed that sensors fabricated with this structure showed enhanced sensitivity compared to single−layer Au sensors, with a sensitivity 50% higher than that of the single−layer Au sensor. In the case of Ag/Pt structures, simulations indicated enhanced sensitivity from a 10 nm Ag/16 nm Pt structure. However, experimental measurements did not show any evidence for SPP excitation of Pt at the measured wavelength of 632.8 nm, making it unsuitable as a capping layer in our studies.</p> <p>The application of 40 nm Ag/10 nm Au bimetal layers as biosensors was done by the immobilization of thiol−terminated vitamin B12 aptamers on the Au sensor surface. However, the results were not reproducible, and more work on the binding kinetics of this aptamer will need to be performed to use this in a biosensor structure.</p>


Nanophotonics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Yuting Zhao ◽  
Shuaiwen Gan ◽  
Leiming Wu ◽  
Jiaqi Zhu ◽  
Yuanjiang Xiang ◽  
...  

AbstractGermanium selenide (GeSe) nanosheets are stable and inexpensive and considered to have a great potential for photovoltaic applications, however we have demonstrated that GeSe nanosheets are also promising for sensing technology, in this paper. By spin-coating the GeSe nanosheets on the surface of noble metal (Au), we have obtained a surface plasmon resonance (SPR) sensor with significantly enhanced sensitivity, and the performance of the sensor is closely related to the thickness of the GeSe film. By detecting different refractive index solutions, we have obtained the optimized sensitivity with 3581.2 nm/RIU (which is nearly 80% improvement compared to traditional SPR sensors) and figure of merit with 14.37 RIU−1. Moreover, the proposed SPR sensor was vastly superior in sensing Pb2+ heavy metal ions after coating it with chitosan and GeSe composite. A maximum sensitivity of 30.38 nm/μg/l has been verified, which is nearly six times better than that of conventional SPR sensor. Our results demonstrated that GeSe nanosheets overlayer with modified SPR sensor has its great potential in heavy metal detection and chemical-specific molecular identification.


2020 ◽  
Vol 2 (1) ◽  
pp. 100015
Author(s):  
Anil Kumar ◽  
Awadhesh K. Yadav ◽  
Angad S. Kushwaha ◽  
S.K. Srivastava

Sign in / Sign up

Export Citation Format

Share Document