Method for generating infrared big data for deep learning algorithm training by using small sample data

Author(s):  
Chai Guobei ◽  
Yang Wenfu ◽  
Liu Wei ◽  
Zhao Xuan ◽  
Yang Jian ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qian Huang ◽  
Xue Wen Li

Big data is a massive and diverse form of unstructured data, which needs proper analysis and management. It is another great technological revolution after the Internet, the Internet of Things, and cloud computing. This paper firstly studies the related concepts and basic theories as the origin of research. Secondly, it analyzes in depth the problems and challenges faced by Chinese government management under the impact of big data. Again, we explore the opportunities that big data brings to government management in terms of management efficiency, administrative capacity, and public services and believe that governments should seize opportunities to make changes. Brainlike computing attempts to simulate the structure and information processing process of biological neural network. This paper firstly analyzes the development status of e-government at home and abroad, studies the service-oriented architecture (SOA) and web services technology, deeply studies the e-government and SOA theory, and discusses this based on the development status of e-government in a certain region. Then, the deep learning algorithm is used to construct the monitoring platform to monitor the government behavior in real time, and the deep learning algorithm is used to conduct in-depth mining to analyze the government's intention behavior.


2021 ◽  
Author(s):  
Jacob Johnson ◽  
Kaneel Senevirathne ◽  
Lawrence Ngo

In this work, we report the results of a deep-learning based liver lesion detection algorithm. While several liver lesion segmentation and classification algorithms have been developed, none of the previous work has focused on detecting suspicious liver lesions. Furthermore, their generalizability remains a pitfall due to their small sample size and sample homogeneity. Here, we developed and validated a highly generalizable deep-learning algorithm for detection of suspicious liver lesions. The algorithm was trained and tested on a diverse dataset containing CT exams from over 2,000 hospital sites in the United States. Our final model achieved an AUROC of 0.84 with a specificity of 0.99 while maintaining a sensitivity of 0.33.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1140
Author(s):  
Jeong-Hee Lee ◽  
Jongseok Kang ◽  
We Shim ◽  
Hyun-Sang Chung ◽  
Tae-Eung Sung

Building a pattern detection model using a deep learning algorithm for data collected from manufacturing sites is an effective way for to perform decision-making and assess business feasibility for enterprises, by providing the results and implications of the patterns analysis of big data occurring at manufacturing sites. To identify the threshold of the abnormal pattern requires collaboration between data analysts and manufacturing process experts, but it is practically difficult and time-consuming. This paper suggests how to derive the threshold setting of the abnormal pattern without manual labelling by process experts, and offers a prediction algorithm to predict the potentials of future failures in advance by using the hybrid Convolutional Neural Networks (CNN)–Long Short-Term Memory (LSTM) algorithm, and the Fast Fourier Transform (FFT) technique. We found that it is easier to detect abnormal patterns that cannot be found in the existing time domain after preprocessing the data set through FFT. Our study shows that both train loss and test loss were well developed, with near zero convergence with the lowest loss rate compared to existing models such as LSTM. Our proposition for the model and our method of preprocessing the data greatly helps in understanding the abnormal pattern of unlabeled big data produced at the manufacturing site, and can be a strong foundation for detecting the threshold of the abnormal pattern of big data occurring at manufacturing sites.


2020 ◽  
Vol 10 (7) ◽  
pp. 2361
Author(s):  
Fan Yang ◽  
Wenjin Zhang ◽  
Laifa Tao ◽  
Jian Ma

As we enter the era of big data, we have to face big data generated by industrial systems that are massive, diverse, high-speed, and variability. In order to effectively deal with big data possessing these characteristics, deep learning technology has been widely used. However, the existing methods require great human involvement that is heavily depend on domain expertise and may thus be non-representative and biased from task to similar task, so for a wide variety of prognostic and health management (PHM) tasks, how to apply the developed deep learning algorithms to similar tasks to reduce the amount of development and data collection costs has become an urgent problem. Based on the idea of transfer learning and the structures of deep learning PHM algorithms, this paper proposes two transfer strategies via transferring different elements of deep learning PHM algorithms, analyzes the possible transfer scenarios in practical application, and proposes transfer strategies applicable in each scenario. At the end of this paper, the deep learning algorithm of bearing fault diagnosis based on convolutional neural networks (CNN) is transferred based on the proposed method, which was carried out under different working conditions and for different objects, respectively. The experiments verify the value and effectiveness of the proposed method and give the best choice of transfer strategy.


Author(s):  
Ryan Schmid ◽  
Jacob Johnson ◽  
Jennifer Ngo ◽  
Christine Lamoureux ◽  
Brian Baker ◽  
...  

AbstractSeveral algorithms have been developed for the detection of pulmonary embolism, though generalizability and bias remain potential weaknesses due to small sample size and sample homogeneity. We developed and validated a highly generalizable deep-learning algorithm, Emboleye, for the detection of PE by using a large and diverse dataset, which included 30,574 computed tomography (CT) exams sourced from over 2,000 hospital sites. On angiography exams, Emboleye demonstrates an AUROC of 0.79 with a specificity of 0.99 while maintaining a sensitivity of 0.37 and PPV of 0.77. On non-angiography CT exams, Emboleye demonstrates an AUROC of 0.77 with a specificity of 0.99 while maintaining a sensitivity of 0.18 and PPV of 0.35.


Sign in / Sign up

Export Citation Format

Share Document