A Comparison of Local Analysis, Global Analysis and Ontology-based Query Expansion Strategies for Bio-medical Literature Search

Author(s):  
Xuheng Xu ◽  
Weizhong Zhu ◽  
Xiaodan Zhang ◽  
Xiaohua Hu ◽  
Il-Yeol Song
Heritage ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 585-611
Author(s):  
Michele Betti ◽  
Valentina Bonora ◽  
Luciano Galano ◽  
Eugenio Pellis ◽  
Grazia Tucci ◽  
...  

This paper reports the knowledge process and the analyses performed to assess the seismic behavior of a heritage masonry building. The case study is a three-story masonry building that was the house of the Renaissance architect and painter Giorgio Vasari (the Vasari’s House museum). An interdisciplinary approach was adopted, following the Italian “Guidelines for the assessment and mitigation of the seismic risk of the cultural heritage”. This document proposes a methodology of investigation and analysis based on three evaluation levels (EL1, analysis at territorial level; EL2, local analysis and EL3, global analysis), according to an increasing level of knowledge on the building. A comprehensive knowledge process, composed by a 3D survey by Terrestrial Laser Scanning (TLS) and experimental in situ tests, allowed us to identify the basic structural geometry and to assess the value of mechanical parameters subsequently needed to perform a reliable structural assessment. The museum represents a typology of masonry building extremely diffused in the Italian territory, and the assessment of its seismic behavior was performed by investigating its global behavior through the EL1 and the EL3 analyses.


Aviation ◽  
2005 ◽  
Vol 9 (3) ◽  
pp. 29-35
Author(s):  
Jerzy Bakunowicz ◽  
Tomasz Kopecki

Modern aircraft safety depends on sufficient strength and rigidity of the structure. This must sustain with lightest possible weight, because any excess mass has not only detrimental effect upon the performance but also is significant economic factor. The most rational way to achieve the proper structure seems to be global analysis commenced in the preliminary design stage already. The analysis outcomes provide base for local analysis of the details led parallel. Any revisions more or less relevant can be made in the numerical model with very expensive prototype changes avoiding. The paper illustrates efficiency of the airframe structure global analysis. As examples the aircrafts still in service but designed without computer application were chosen. The finite elements numerical model of each was created and some critical in-flight load cases were simulated.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 212
Author(s):  
Miles Owen ◽  
Abdelkader Frendi

The results from a temporal linear stability analysis of a subsonic boundary layer over a flat plate with a straight and wavy leading edge are presented in this paper for a swept and un-swept plate. For the wavy leading-edge case, an extensive study on the effects of the amplitude and wavelength of the waviness was performed. Our results show that the wavy leading edge increases the critical Reynolds number for both swept and un-swept plates. For the un-swept plate, increasing the leading-edge amplitude increased the critical Reynolds number, while changing the leading-edge wavelength had no effect on the mean flow and hence the flow stability. For the swept plate, a local analysis at the leading-edge peak showed that increasing the leading-edge amplitude increased the critical Reynolds number asymptotically, while the leading-edge wavelength required optimization. A global analysis was subsequently performed across the span of the swept plate, where smaller leading-edge wavelengths produced relatively constant critical Reynolds number profiles that were larger than those of the straight leading edge, while larger leading-edge wavelengths produced oscillating critical Reynolds number profiles. It was also found that the most amplified wavenumber was not affected by the wavy leading-edge geometry and hence independent of the waviness.


2011 ◽  
Vol 77 (2) ◽  
pp. 135 ◽  
Author(s):  
Vivek Jain ◽  
DeepakK Raut

2014 ◽  
Vol 553 ◽  
pp. 667-672
Author(s):  
R. Emre Erkmen

Thin-walled members that have one dimension relatively large in comparison to the cross-sectional dimensions are usually modelled by using beam-column type finite element formulations. Beam-column elements however, are based on the assumption of rigid cross-section, thus they cannot consider the cross-sectional deformations such as local buckling and only allows considerations of the beam axis behaviour such as flexural or lateral-torsional buckling. Shell-type finite elements can be used to model the structure in order to consider these local deformation effects. Based on the Bridging multi-scale approach, this study proposes a numerical technique that is able to split the global analysis, which is performed by using simple beam-type elements, from the local analysis which is based on more sophisticated shell-type elements. As a result, the proposed multi-scale method allows the usage of shell elements in a local region to incorporate the local deformation effects on the overall behaviour of thin-walled members without necessitating a shell-type model for the whole member.


2018 ◽  
Vol 2018 ◽  
pp. 1-4 ◽  
Author(s):  
Veeraraghavan Meyyur Aravamudan ◽  
Chaozer Er ◽  
Ikram Hussain ◽  
Nicholas wong wai Cheong ◽  
Chong Chern Hao ◽  
...  

Hemophagocytic lymphohistiocytosis (HLH) is rare and life-threatening medical emergency. Parvovirus infection is rarely associated with HLH. We report a case of parvovirus-related HLH in a patient with alpha thalassaemia (HbH disease). The patient responded well to a course of dexamethasone without the need of etoposide. Based on our literature search, this is the first case of parvovirus related HLH in a patient with HbH disease in the medical literature.


2013 ◽  
Vol 336-338 ◽  
pp. 2147-2151
Author(s):  
Yong Liu ◽  
Li Yan Yuan

In order to improve the efficiency of designing monitor system software and modeling with UML, the UML application of software system modeling was researched in theory and practice. The whole process is divided into four steps, which are the global analysis, the local analysis, the global design, and the local design, and the GUI of the system is described at last. A distributed highway monitoring system is analyzed and designed by UML.


2016 ◽  
Vol 7s2 ◽  
pp. BECB.S36155 ◽  
Author(s):  
Kavita Ganesan ◽  
Shane Lloyd ◽  
Vikren Sarkar

The ability to find highly related clinical concepts is essential for many applications such as for hypothesis generation, query expansion for medical literature search, search results filtering, ICD-10 code filtering and many other applications. While manually constructed medical terminologies such as SNOMED CT can surface certain related concepts, these terminologies are inadequate as they depend on expertise of several subject matter experts making the terminology curation process open to geographic and language bias. In addition, these terminologies also provide no quantifiable evidence on how related the concepts are. In this work, we explore an unsupervised graphical approach to mine related concepts by leveraging the volume within large amounts of clinical notes. Our evaluation shows that we are able to use a data driven approach to discovering highly related concepts for various search terms including medications, symptoms and diseases.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750015 ◽  
Author(s):  
R. Emre Erkmen ◽  
Magdi Mohareb ◽  
Ashkan Afnani

Elevated pipelines are commonly encountered in petro-chemical and industrial applications. Within these applications, pipelines normally span hundreds of meters and are thus analyzed using one-dimensional (1D) beam-type finite elements when the global behavior of the pipeline is sought at a reasonably low computational cost. Standard beam-type elements, while computationaly economic, are based on the assumption of rigid cross-section. Thus, they are unable to capture the effects of cross-sectional localized deformations. Such effects can be captured through shell-type finite element models. For long pipelines, shell models become prohibitively expensive. Within this context, the present study formulates an efficient numerical modeling which effectively combines the efficiency of beam-type solutions while retaining the accuracy of shell-type solutions. An appealing feature of the model is that it is able to split the global analysis based on simple beam-type elements from the local analysis based on shell-type elements. This is achieved through domain-decomposition procedure within the framework of the Bridging multi-scale method of analysis. Solutions based on the present model are compared to those based on full shell-type analysis. The comparison demonstrates the accuracy and efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document