Study on Electrical Characteristics of 550 kV GIL Three-post Insulator After Mechanical Load Tests

Author(s):  
Ruodong Huang ◽  
Chao Gao ◽  
Fusheng Zhou ◽  
Guoli Wang ◽  
Yao Zheng ◽  
...  
2020 ◽  
Vol 10 (2) ◽  
pp. 694 ◽  
Author(s):  
Simpy Sanyal ◽  
Taeyong Kim ◽  
Junsin Yi ◽  
Ja-Bin Koo ◽  
Ju-Am Son ◽  
...  

The aging of porcelain insulators is responsible for the failure of power utilities. Porcelain insulators from different places in South Korea, possessing various aging times and years of installation, have been investigated to carry out lifetime statistics. These samples have a mass of 36,000 lbs and are operated at 154 kV. X-ray fluorescence (XRF) and scanning electron microscopy (SEM) were performed on the porcelain bodies of the samples collected. XRF and SEM revealed trends in the weight percentage of SiO2, Al2O3, and Fe2O3 in the porcelain bodies of the collected samples. The SiO2 and Fe2O3 weight percentage reduced to 8.93% and 73.17%, respectively, in sample C compared to A. However, the Al2O3 weight percentage increased to 16.23% in sample C compared to sample A. This change in weight percentage of SiO2, Fe2O3, and Al2O3 contributed toward enhancing the mechanical and electrical properties of the insulators. Mechanical load tests with electrical voltage (M&E), thermal and mechanical load tests (T&M), and hardness tests (HRB) were performed to evaluate these characteristics. Experiments revealed an increase of 90.9% in the inequality factor (K) in sample C compared to A. The impact of constituents of porcelain on the lifetime expectancy of a porcelain insulator was reported by implementing statistical strategies, such as the Weibull distribution.


2014 ◽  
Vol 966-967 ◽  
pp. 96-102
Author(s):  
Tanja Spremberg ◽  
Ingo Engler ◽  
Berend Denkena

One way to improve the run-in period of the commutation system of an electrical motor is the modification of the commutator ́s roughness. The reduction of the run-in period affects the wear during the motor life time. Therefore, within this paper the influence of the initial commutator roughness on the run-in period and the electromechanical wear is investigated. The research is done with a special starter components test rig. During the tests the wear is analyzed while the applied electromechanical and mechanical load is varied in order to enforce different wear behaviors. It is expected that with an optimal initial surface roughness the amount of wear is reduced until the steady state has been reached. However, the results revealed that there is no significant influence of the initial surface roughness on the examined electromechanical tribological system. It was found, that the mechanical wear of the commutator and the brushes is similar to the electromechanical wear during the run-in period. The run-in period of the mechanical load tests is shorter compared to the other experiments.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
A.M. Letsoalo ◽  
M.E. Lee ◽  
E.O. de Neijs

Semiconductor devices require metal contacts for efficient collection of electrical charge. The physics of these metal/semiconductor contacts assumes perfect, abrupt and continuous interfaces between the layers. However, in practice these layers are neither continuous nor abrupt due to poor nucleation conditions and the formation of interfacial layers. The effects of layer thickness, deposition rate and substrate stoichiometry have been previously reported. In this work we will compare the effects of a single deposition technique and multiple depositions on the morphology of indium layers grown on (100) CdTe substrates. The electrical characteristics and specific resistivities of the indium contacts were measured, and their relationships with indium layer morphologies were established.Semi-insulating (100) CdTe samples were cut from Bridgman grown single crystal ingots. The surface of the as-cut slices were mechanically polished using 5μm, 3μm, 1μm and 0,25μm diamond abrasive respectively. This was followed by two minutes immersion in a 5% bromine-methanol solution.


2018 ◽  
Author(s):  
Grischa Bratke ◽  
Steffen Willwacher ◽  
David Maintz ◽  
Gert-Peter Brüggemann

PCI Journal ◽  
1991 ◽  
Vol 36 (4) ◽  
pp. 66-73
Author(s):  
Alex Aswad George Burnley
Keyword(s):  

MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3153-3161
Author(s):  
Marco Antonio Juárez Sánchez ◽  
Miguel Ángel Meléndez Lira ◽  
Celestino Odín Rodríguez Nava

AbstractDrug contamination in water is one of the current fields of study. Since 1990, the presence of drugs in drinking water has been a concern to scientists and public. In Mexico, these organic compounds are not efficiently removed in wastewater treatment plants; therefore, alternative methodologies have been studied that allow these compounds to have a high percentage of degradation or be completely degraded. One example of these techniques is heterogeneous photocatalysis which has obtained positive results in the degradation of drugs using ZnO nanoparticles. These are commonly selected for their electrical characteristics, even though they disperse in water and an additional unit operation is required to separate them from the liquid medium. To eliminate drugs with nano particles in a single stage, polycaprolactone-based membranes with adhered ZnO nanoparticles, by means of electrospinning, were prepared to degrade drugs such as diclofenac. The technique used has shown to efficiently break down diclofenac in 4 hours according to the capillary electrophoresis readings.


Sign in / Sign up

Export Citation Format

Share Document