Artificial immune wireless intelligent sensor and actuator network (WISAN) for more electrical aircraft performance monitoring system (Study case: 80 passenger aircraft)

Author(s):  
Nina Hendrarini ◽  
Ema
2019 ◽  
Author(s):  
Fanny Grisetto ◽  
Yvonne N. Delevoye-Turrell ◽  
Clémence Roger

Aggressive behaviors in pathological and healthy populations have been largely related to poor cognitive control functioning. However, few studies investigated the influence of aggressive traits (i.e., aggressiveness) on cognitive control. In the current study, we investigated the effects of aggressiveness on cognitive control abilities and particularly, on performance monitoring. Thirty-two participants performed a Simon task while electroencephalography (EEG) and electromyography (EMG) were recorded. Participants were classified as high and low aggressive using the BPAQ questionnaire (Buss & Perry, 1992). EMG recordings were used to reveal three response types by uncovering small incorrect muscular activations in ~15% of correct trials (i.e., partial-errors) that have to be distinguished from full-error and pure-correct responses. For these three response types, EEG recordings were used to extract fronto-central negativities indicative of performance monitoring, the error and correct (-related) negativities (ERN/Ne and CRN/Nc). Behavioral results indicated that the high aggressiveness group had a larger congruency effect compared to the low aggressiveness group, but there were no differences in accuracy. EEG results revealed a global reduction in performance-related negativities amplitudes in all the response types in the high aggressiveness group compared to the low aggressiveness group. Interestingly, the distinction between the ERN/Ne and the CRN/Nc components was preserved both in high and low aggressiveness groups. In sum, high aggressive traits did not affect the capacity to self-evaluate erroneous from correct actions but are associated with a decrease in the importance given to one’s own performance. The implication of these findings are discussed in relation to pathological aggressiveness.


2010 ◽  
Vol 30 (6) ◽  
pp. 1642-1644
Author(s):  
Jing YOU ◽  
Kang-ning XU ◽  
Hong-yuan WANG ◽  
Ya-nan YANG ◽  
Jin-shu GAO

2019 ◽  
Vol 124 (1272) ◽  
pp. 170-188
Author(s):  
V. A. Deo ◽  
F. Silvestre ◽  
M. Morales

ABSTRACTThis work presents an alternative methodology for monitoring flight performance during airline operations using the available inboard instrumentation system. This method tries to reduce the disadvantages of the traditional specific range monitoring technique where instrumentation noise and cruise stabilisation conditions affect the quality of the performance monitoring results. The proposed method consists of using an unscented Kalman filter for aircraft performance identification using Newton’s flight dynamic equations in the body X, Y and Z axis. The use of the filtering technique reduces the effect of instrumentation and process noise, enhancing the reliability of the performance results. Besides the better quality of the monitoring process, using the proposed technique, additional results that are not possible to predict with the specific range method are identified during the filtering process. An example of these possible filtered results that show the advantages of this proposed methodology are the aircraft fuel flow offsets, as predicted in the specific range method, but also other important aircraft performance parameters as the aircraft lift and drag coefficients (CL and CD), sideslip angle (β) and wind speeds, giving the operator a deeper understanding of its aircraft operational status and the possibility to link the operational monitoring results to aircraft maintenance scheduling. This work brings a cruise stabilisation example where the selected performance monitoring parameters such as fuel flow factors, lift and drag bias, winds and sideslip angle are identified using only the inboard instrumentation such as the GPS/inertial sensors, a calibrated anemometric system and the angle-of-attack vanes relating each flight condition to a specific aircraft performance monitoring result. The results show that the proposed method captures the performance parameters by the use of the Kalman filter without the need of a strict stabilisation phase as it is recommended in the traditional specific range method, giving operators better flexibility when analysing and monitoring fleet performance.


2021 ◽  
Author(s):  
Vadim Goryachikh ◽  
Fahad Alghamdi ◽  
Abdulrahman Takrouni

Abstract Background information Natural gas liquid (NGL) production facilities, typically, utilize turbo-expander-brake compressor (TE) to generate cold for C2+ separation from the natural gas by isentropic expansion of feed stream and use energy absorbed by expansion to compress residue gas. Experience shows that during operational phase TE can exposed to operation outside of design window that may lead to machine integrity loss and consequent impact on production. At the same time, there is a lack of performance indicators that help operator to monitor operating window of the machine and proactively identify performance deterioration. For instance, TE brake compressor side is always equipped with anti-surge protection system, including surge deviation alarms and trip. However, there is often gap in monitoring deviation from stonewall region. At the same time, in some of the designs (2×50% machines) likelihood of running brake compressor in stonewall is high during one machine trip or train start-up, turndown operating modes. Also, typical compressor performance monitoring systems does not have enough dynamic parameters that may indicate machine process process performance deterioration proactively (real-time calculation of actual polytrophic efficiency, absorbed power etc.) and help operator to take action before catastrophic failure occurs. In addition, typical compressor monitoring systems are based on assumed composition and fixed compressibility factor and do not reflect actual compositions variations that may affect machine performance monitoring. To overcome issues highlighted above, Hawiyah NGL (HNGL) team has developed computerized monitoring and advisory system to monitor the performance of turbo-expander-brake compressor, proactively, identify potentially unsafe conditions or performance deterioration and advice operators on taking necessary actions to avoid unscheduled deferment of production. Computerized performance monitoring system has been implemented in HNGL DCS (Yokogawa) and utilized by control room operators on day-to-day basis. Real-time calculation, analysis and outputs produced by performance monitoring system allow operator to understand how current operating condition are far from danger zone. Proactive deviation alarms and guide messages produce by the system in case of deviation help operators to control machine from entering unsafe region. Actual polytrophic efficiency, adsorbed power calculations provide machine condition status and allow identifying long-term performance deterioration trends.


2019 ◽  
Vol 111 ◽  
pp. 06058
Author(s):  
Galina Prică ◽  
Lohengrin Onuțu ◽  
Grațiela Țârlea

The article shows a study case of a geothermal system near Bucharest. In the paper it is shown that for a good efficiency of a geothermal system for heating and air conditioning, it is important to follow a few steps. One step is a very accurate calculation of the heat and cold load. In the next step it is important to use a specific equipment to obtain the Thermal Response Test (TRT) of geological formations crossed by the borehole. TRT is helpful in providing information related to the evolution of the soil temperature while introducing a thermal load. All information that can be obtained or calculated from the TRT will provide how the climate system will function in time and its efficiency. Furthermore, the effective thermal conductivity and thermal resistance of the well will be determined, extremely important parameters in designing the correct length of the geoheat exchanger. The article used specific software to simulate the evolution of parameters in time, for soil and heat pump. Earth Energy Design offer information for the number of needed boreholes, the depth and the yearly evolution of the soil’s temperature in time for the system etc. Following all these main steps, finally a very efficient system can be designed, that can ensure the heating and produce hot water for the consumption of a house, office building or of other destination buildings.


Sign in / Sign up

Export Citation Format

Share Document