Rotor Position Estimation of PMSM With Noise Suppression Using Steady-State Linear Kalman Filter and High Frequency Square Wave Injection

Author(s):  
Jingbin Sun ◽  
Feng Ju ◽  
Qinghao Wang ◽  
Yan Hong ◽  
Bai Chen ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4776
Author(s):  
Shuang Wang ◽  
Jianfei Zhao ◽  
Kang Yang

In this paper, a new sensorless control scheme with the injection of a high-frequency square-wave voltage of an interior permanent-magnet synchronous motor (IPMSM) at low- and zero-speed operation is proposed. Conventional schemes may face the problems of obvious current sampling noise and slow identification in the process of magnetic polarity detection at zero speed operation, and the effects of inverter voltage error on the rotor position estimation accuracy at low speed operation. Based on the principle analysis of d-axis magnetic circuit characteristics, a method for determining the direction of magnetic polarity of d-axis two-opposite DC voltage offset by uninterruptible square-wave injection is proposed, which is fast in convergence rate of magnetic polarity detection and more distinct. In addition, the strategy injects a two-opposite high-frequency square-wave voltage vectors other than the one voltage vector into the estimated synchronous reference frame (SRF), which can reduce the effects of inverter voltage error on the rotor position estimation accuracy. With this approach, low-pass filter (LPF) and band-pass filter (BPF), which are used to obtain the fundamental current component and high-frequency current response with rotor position information respectively in the conventional sensorless control, are removed to simplify the signal process for estimating the rotor position and further improve control bandwidth. Finally, the experimental results on an IPMSM drive platform indicate that the rotor position with good steady state and dynamic performance can be obtained accurately at low-and zero-speed operation with the sensorless control strategy.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1919
Author(s):  
Lei Guo ◽  
Zhongping Yang ◽  
Fei Lin

In the applications of rail transit and electric vehicles, sensorless control of interior permanent magnet synchronous motor (IPMSM) usually uses high frequency (HF) signal injection in low speed or zero speed. Rotating HF signal injection based on the stationary reference frame can identify the rotor position, but its accuracy is easily affected by various nonlinearities of the control system and stator resistance. In this paper, the causes of rotor position estimation deviation are analyzed and deduced in detail. It is proposed that the rotor position estimation deviation can be divided into high frequency phase deviation (HFPD) and stator resistance phase deviation. On the basis of these analyses, a novel sensorless rotor position estimation strategy for IPMSM is proposed. This strategy can theoretically eliminate the HF phase deviation caused by the nonlinearity of the control system and reduce the phase deviation caused by the stator resistance. Although the factors that cause the estimation deviation of rotor position may change with the time and the operation status of the motor, the proposed strategy has the characteristics of online calculation and real-time compensation, which can improve the accuracy of the estimated rotor position. In addition, this paper provides a detailed theoretical derivation of resolving rotor position considering stator resistance and HF phase deviation. Finally, the result analysis on an IPMSM demonstrate the correctness of the theoretical analysis and the effectiveness of the strategy.


Sign in / Sign up

Export Citation Format

Share Document