3D segmentation and characterization of lower limb vessels in multi-slice computed tomography

Author(s):  
C. Boldak ◽  
C. Toumoulin ◽  
J.-L. Coatrieux
Author(s):  
Lucas Sousa Macedo ◽  
Renato Polese Rusig ◽  
Gustavo Bersani Silva ◽  
Alvaro Baik Cho ◽  
Teng Hsiang Wei ◽  
...  

BACKGROUND: Microsurgical flaps are widely used to treat complex traumatic wounds of upper and lower limbs. Few studies have evaluated whether the vascular changes in preoperative computed tomography angiography (CTA) influence the selection of recipient vessel and type of anastomosis and the microsurgical flaps outcomes including complications. OBJECTIVE: The aim of this study was to evaluate if preoperative CTA reduces the occurrence of major complications (revision of the anastomosis, partial or total flap failure, and amputation) of the flaps in upper and lower limb trauma, and to describe and analyze the vascular lesions of the group with CTA and its relationship with complications. METHODS: A retrospective cohort study was undertaken with all 121 consecutive patients submitted to microsurgical flaps for traumatic lower and upper limb, from 2014 to 2020. Patients were divided into two groups: patients with preoperative CTA (CTA+) and patients not submitted to CTA (CTA–). The presence of postoperative complications was assessed and, within CTA+, we also analyzed the number of patent arteries on CTA and described the arterial lesions. RESULTS: Of the 121 flaps evaluated (84 in the lower limb and 37 in the upper limb), 64 patients underwent preoperative CTA. In the CTA+ group, 56% of patients with free flaps for lower limb had complete occlusion of one artery. CTA+ patients had a higher rate of complications (p = 0.031), which may represent a selection bias as the most complex limb injuries and may have CTA indicated more frequently. The highest rate of complications was observed in chronic cases (p = 0.034). There was no statistically significant difference in complications in patients with preoperative vascular injury or the number of patent arteries. CONCLUSIONS: CTA should not be performed routinely, however, CTA may help in surgical planning, especially in complex cases of high-energy and chronic cases, since it provides information on the best recipient artery and the adequate level to perform the microanastomosis, outside the lesion area.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 772
Author(s):  
Ana Pimentel ◽  
Jordi Bover ◽  
Grahame Elder ◽  
Martine Cohen-Solal ◽  
Pablo Antonio Ureña-Torres

Although frequently silent, mineral and bone disease (MBD) is one of the most precocious complication of chronic kidney disease (CKD) and is omnipresent in patients with CKD stage 5. Its pathophysiology is complex, but basically, disturbances in vitamin D, phosphate, and calcium metabolism lead to a diverse range of clinical manifestations with secondary hyperparathyroidism usually being the most frequent. With the decline in renal function, CKD-MBD may induce microstructural changes in bone, vascular system and soft tissues, which results in macrostructural lesions, such as low bone mineral density (BMD) resulting in skeletal fractures, vascular and soft tissue calcifications. Moreover, low BMD, fractures, and vascular calcifications are linked with increased risk of cardiovascular mortality and all-cause mortality. Therefore, a better characterization of CKD-MBD patterns, beyond biochemical markers, is helpful to adapt therapies and monitor strategies as used in the general population. An in-depth characterization of bone health is required, which includes an evaluation of cortical and trabecular bone structure and density and the degree of bone remodeling through bone biomarkers. Standard radiological imaging is generally used for the diagnosis of fracture or pseudo-fractures, vascular calcifications and other features of CKD-MBD. However, bone fractures can also be diagnosed using computed tomography (CT) scan, magnetic resonance (MR) imaging and vertebral fracture assessment (VFA). Fracture risk can be predicted by bone densitometry using dual-energy X-ray absorptiometry (DXA), quantitative computed tomography (QTC) and peripheral quantitative computed tomography (pQTC), quantitative ultrasound (QUS) and most recently magnetic resonance micro-imaging. Quantitative methods to assess bone consistency and strength complete the study and adjust the clinical management when integrated with clinical factors. The aim of this review is to provide a brief and comprehensive update of imaging techniques available for the diagnosis, prevention, treatment and monitoring of CKD-MBD.


Sign in / Sign up

Export Citation Format

Share Document