Drosophila flight force measurements using a MEMS micro force sensor

Author(s):  
Yu Sun ◽  
D.P. Potasek ◽  
D.J. Bell ◽  
S.N. Fry ◽  
B.J. Nelson
2014 ◽  
Vol 599-601 ◽  
pp. 1135-1138
Author(s):  
Chao Zhe Ma ◽  
Jin Song Du ◽  
Yi Yang Liu

At present, sub-micro-Newton (sub-μN) micro-force in micro-assembly and micro-manipulation is not able to be measured reliably. The piezoelectric micro-force sensors offer a lot of advantages for MEMS applications such as low power dissipation, high sensitivity, and easily integrated with piezoelectric micro-actuators. In spite of many advantages above, the research efforts are relatively limited compared to piezoresistive micro-force sensors. In this paper, Sensitive component is polyvinylidene fluoride (PVDF) and the research object is micro-force sensor based on PVDF film. Moreover, the model of micro-force and sensor’s output voltage is built up, signal processing circuit is designed, and a novel calibration method of micro-force sensor is designed to reliably measure force in the range of sub-μN. The experimental results show the PVDF sensor is designed in this paper with sub-μN resolution.


Micromachines ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. 304
Author(s):  
Huan Liu ◽  
Zhongliang Yu ◽  
Yan Liu ◽  
Xudong Fang

2020 ◽  
Vol 238 ◽  
pp. 12009
Author(s):  
Walter S. J. Ferreira ◽  
Paulo S. S. dos Santos ◽  
Paulo Caldas ◽  
Pedro A. S. Jorge ◽  
João M. S. Sakamoto

In this work, a long-period fiber grating (LPG) based sensor was evaluated as a sensing device for micro-force measurement, in the order of micro Newtons. It was used an LPG fabricated by arc-inducted technique in a SMF-28 standard optical fiber. The optical fiber was fixed between two clamps with a separation of 150 mm with the middle of the LPG located at the center. Characterizations were performed in terms of temperature, curvature and strain. The grating was then used as a micro-force sensor by means of both curvature and strain, induced by a hung mass in a stretched fiber. Furthermore, the evaluation of a precurvature LPG was performed to assess if an increase of sensitivity is achieved. Micro-force sensitivity achieved with the stretched LPG was 1.41 nm/mN and it was demonstrated that its sensitivity can be enhanced to 5.14 nm/mN with a pre-curvature of 2.2 m–1 applied to the LPG, achieving a spectral resolution of at least 15.6 μN.


2012 ◽  
Vol 7 (1-3) ◽  
pp. 13-20 ◽  
Author(s):  
Kenichi Ohara ◽  
Daiki Kawakami ◽  
Tomohito Takubo ◽  
Yasushi Mae ◽  
Tamio Tanikawa ◽  
...  

2010 ◽  
Vol 25 (11) ◽  
pp. 2231-2239 ◽  
Author(s):  
S. DE MAN ◽  
K. HEECK ◽  
K. SMITH ◽  
R. J. WIJNGAARDEN ◽  
D. IANNUZZI

We present a short overview of the recent efforts of our group in the design of high precision Casimir force setups. We first describe our Atomic Force Microscope based technique that allows one to simultaneously and continuously calibrate the instrument, compensate for a residual electrostatic potential, measure the Casimir force, and, in the presence of a fluid in the gap between the interacting surfaces, measure the hydrodynamic force. Then we briefly discuss a new force sensor that adapts well to Casimir force measurements in critical environments.


Author(s):  
Hiroyuki Yabugaki ◽  
Kenichi Ohara ◽  
Masaru Kojima ◽  
Mitsuhiro Horade ◽  
Kazuto Kamiyama ◽  
...  

2011 ◽  
Vol 2-3 ◽  
pp. 489-494
Author(s):  
Zhi Yong Sun ◽  
Wen Lin Chen ◽  
Yun Quan Su ◽  
Li Na Hao

This article is intended to design a static micro-force sensor with a simple structure employing the polymer material PVDF (polyvinylidene fluoride) film as its sensing element, and will carry out some micro-force tracking tests. During the tracking tests, this paper employs a Fuzzy-PID control method and an ordinary PD control method to control the system, and will also analyze the results of them.


Sign in / Sign up

Export Citation Format

Share Document