Application of sakhaptinsk zeolite for ground water treatment

Author(s):  
O.B. Nazarenko ◽  
R.F. Zarubina ◽  
N.S. Volochova
Keyword(s):  
2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Arie Herlambang

Clean water to poor communities who live in crowded municipal area is stillexpensive and a luxury. This condition is evidenced by the number of people whouse ground water for their daily water, because water taps still seems expensivefor them. Diarrheal disease is still relatively high for Indonesia, where nearly 16thousand people suffer from diarrhea due to poor sanitation. To help the poor inthe city, there are several alternative technologies that can be applied to publicaccess to clean water and adequate low-cost, including ground water treatmenttechnology with a filter system equipped with an ultraviolet sterilizer, or ozonegenerators, or using ultrafiltration, if possible can also use the reverse osmosismembrane that for fresh water. Arsinum is the best alternative should be chosenfor fulfilled potable water in slump area.Keywords : Sanitation, water treatment technology, portable water, low-cost, slump area


2013 ◽  
Vol 5 (6) ◽  
pp. 655-658
Author(s):  
Egidijus Mykolaitis ◽  
Andrius Styra ◽  
Vladas Vekteris

Iron is one of the most common elements in ground water. Bythe HN 24:2003 iron concentration in water can‘t be higher than200 μg/l. Water treatment with an acoustic field is a very relevanttopic. Acoustic field is widely used in industrion, medicine,chemical industry and manufacturing. When water is affectedby ultrasound, physical-chemical processes begin. Ultrasoundvibrations lead to dispersion, degasation and coagulation. Ironparticles connect to each other when distance between them istwo times bigger then their own radius. R = 2R. And if thisprocess continues particles connect one by one. In this article teststand and methodics using ultrasonic piezoceramic are shown. Santrauka Geležis – dažniausiai požeminiuose vandenyse aptinkama priemaiša, kuri prastina geriamojo vandens savybes, todėl būtina bendrosios geležies koncentraciją sumažinti iki 0,2 mg/l. Vienas iš geležies šalinimo būdu yra paremtas ultragarso panaudojimu. Straipsnyje glaustai aptarti bendrosios geležies būviai vandenyje, jos šalinimo metodai ir pateikta eksperimentinė metodika. Eksperimentas atliktas naudojant skirtingų dažnių garso bangas nuo 8 kHz iki 20 kHz diapazone. Akustinio lauko daromai įtakai nustatyti, naudojant skirtingų dažnių garso bangas, buvo panaudoti trys skirtingi vandens debitai. Iš gautų rezultatų suformuluotos išvados.


Desalination ◽  
2005 ◽  
Vol 179 (1-3) ◽  
pp. 237-244 ◽  
Author(s):  
S. Verbych ◽  
M. Bryk ◽  
A. Alpatova ◽  
G. Chornokur
Keyword(s):  

2019 ◽  
Vol 27 (1) ◽  
pp. 354-365
Author(s):  
Hussein Hamid Emran Al-Husseini

The important of ground water is increasing in the future as a source of fresh waters; in addition, many countries contain a number of water treatment plants to treat surface water. Using conventional treatment plant in the cities to treat ground water will decrease the cost of ground water treatment and may be help to depend on both surface and ground water supplies. This paper studied the ability of treating ground water by conventional water treatment. The quality of the ground water source is studied in the mention area during study period. The chemical quality of ground water is tested and there is within the standards of drinking water except iron.  The conventional treatment was enhancing quality of treated water by increment of dissolved oxygen concentrations toward optimum value. Water treatment plant was effective for removal of iron from ground water of about 50%, in addition there is an effect of conventional treatment on sulfate removal (sulfate may be increase above standards in some ground water sources). The statistical analysis of data shows there is a correlation between quality parameters of raw and treated water and between iron and sulfate of treated water in the correlation matrix. In addition, confidence test was applied on the correlation coefficients using fisher's transformation .The analysis shows, that there is a positive period (0.244, 0.941) of confidence of 95% of correlation factors of iron and sulfate.


Sign in / Sign up

Export Citation Format

Share Document