Multi-temporal analysis of a boreal forest using ERS-1 and JERS-1 SAR data

Author(s):  
H. Israelsson ◽  
J. Askne ◽  
R. Sylvander
2019 ◽  
Vol 11 (23) ◽  
pp. 2740 ◽  
Author(s):  
Bin Luo ◽  
Chudi Hu ◽  
Xin Su ◽  
Yajun Wang

Temporal analysis of synthetic aperture radar (SAR) time series is a basic and significant issue in the remote sensing field. Change detection as well as other interpretation tasks of SAR images always involves non-linear/non-convex problems. Complex (non-linear) change criteria or models have thus been proposed for SAR images, instead of direct difference (e.g., change vector analysis) with/without linear transform (e.g., Principal Component Analysis, Slow Feature Analysis) used in optical image change detection. In this paper, inspired by the powerful deep learning techniques, we present a deep autoencoder (AE) based non-linear subspace representation for unsupervised change detection with multi-temporal SAR images. The proposed architecture is built upon an autoencoder-like (AE-like) network, which non-linearly maps the input SAR data into a latent space. Unlike normal AE networks, a self-expressive layer performing like principal component analysis (PCA) is added between the encoder and the decoder, which further transforms the mapped SAR data to mutually orthogonal subspaces. To make the proposed architecture more efficient at change detection tasks, the parameters are trained to minimize the representation difference of unchanged pixels in the deep subspace. Thus, the proposed architecture is namely the Differentially Deep Subspace Representation (DDSR) network for multi-temporal SAR images change detection. Experimental results on real datasets validate the effectiveness and superiority of the proposed architecture.


1998 ◽  
Vol 44 (146) ◽  
pp. 42-53 ◽  
Author(s):  
K. C. Partington

AbstractGlacier facies from the Greenland ice sheet and the Wrangell-St Elias Mountains, Alaska, are analyzed using multi-temporal synthetic aperture radar (SAR) data from the European Space Agency ERS-1 satellite. Distinct zones and facies are visible in multi-temporal SAR data, including the dry-snow facies, the combined percolation and wet-snow facies, the ice facies, transient melt areas and moraine. In Greenland and south-central Alaska, very similar multi-temporal signatures are evident for the same facies, although these facies are found at lower altitude in West Greenland where the equilibrium line appears to be found at sea level at 71°30?N during the year analyzed (1992-93), probably because of the cooling effect of the eruption of Mount Pinatubo. In Greenland, both the percolation and dry-snow facies are excellent distributed targets for sensor calibration, with backscatter coefficients stable to within 0.2 dB. However, the percolation facies near the top of Mount Wrangell are more complex and less easily delineated than in Greenland, and at high altitude the glacier facies have a multi-temporal signature which depends sensitively on slope orientation.


Geomorphology ◽  
2019 ◽  
Vol 345 ◽  
pp. 106844 ◽  
Author(s):  
Sara Cucchiaro ◽  
Federico Cazorzi ◽  
Lorenzo Marchi ◽  
Stefano Crema ◽  
Alberto Beinat ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 56-64
Author(s):  
Iqbal Eko Noviandi ◽  
Ramadhan Alvien Hanif ◽  
Hasanah Rahma Nur ◽  
Nandi

Indonesia is a developing country whose construction and development are centered on the island of Java, especially in West Java Province. Sukabumi City is one of the areas in West Java. The development of urban areas is expanding due to various human needs to carry out the construction of buildings. Remote sensing that can be used to store developments with multi-temporal analysis with materials is Landsat imagery from 2001 to 2020. The method used is the Normalized Difference Built-up Index (NDBI). The purpose of this study is to map the development of the built-up land from year to year and predict the following years. The results of the research on the significant changes in built-up land occurred between 2013-2020, while from 2001 to 2013 there was not much change. Based on the research results, the total growth of built-up land was 1.539% per year with a population growth rate of 1.4% per year. The results of the analysis show that the area of ​​land built in Sukabumi City in 2028 is 186,7194 km2 or has increased by 21,2808 km2 since 2020.


Sign in / Sign up

Export Citation Format

Share Document