Remote sensing data availability from the Earth Observation System (EOS) via the Distributed Active Archive Center (DAAC) at NSIDC

Author(s):  
R.L. Weaver ◽  
V.J. Troisi
2018 ◽  
Vol 12 (4) ◽  
pp. 17-19 ◽  
Author(s):  
Салават Сулейманов ◽  
Salavat Suleymanov ◽  
Николай Логинов ◽  
Nikolay Loginov

The vast territory of Russia, occupied by agricultural lands, is difficult to control due to the lack of an undeveloped network of operational monitoring points, ground stations, including meteorological stations, lack of aviation support due to the high cost of maintaining staff, etc. In addition, due to various types of natural processes, there is a constant change in the boundaries of acreage, soil characteristics and vegetation conditions in different fields and from site to site. Abroad, the above mentioned problems are successfully solved due to the application of remote sensing data (RSD) of the Earth, obtained with the help of unmanned aerial vehicles (UAVs). The proceedings, obtained (UAV), can help both to solve complex tasks of managing agricultural territories, and in highly specialized areas.


2020 ◽  
Vol 10 (10) ◽  
pp. 3480
Author(s):  
Zhen Ma ◽  
Xiyuan Chen

The measurement of the phase center of the airborne array antenna can directly affect the accuracy of the Earth observation system. However, the relationship between the relative motion of each sub-antenna cannot be accurately measured because of the adverse environment of the airborne platform. Therefore, it is necessary to find a suitable method to measure the motion parameters of distributed antennas and the phase center of each element antenna accurately in order to improve the imaging resolution of the Earth observation system. Distributed position and orientation system (POS) technology has high precision, but its measurement error will accumulate with time. So it needs to transfer and align continuously to achieve high-precision measurement. The paper introduces the distributed measurement method of measuring the array antenna position based on the combination of fiber Bragg grating (FBG) sensing technology and POS technology on the aircraft wing. The paper first introduces the technical scheme and principle, then carries out the structural design and method analysis. Next, the structural strength of the experimental model is checked and summarized.


2020 ◽  
Author(s):  
Jose E. Adsuara ◽  
Adrián Pérez-Suay ◽  
Alvaro Moreno-Martínez ◽  
Anna Mateo-Sanchis ◽  
Maria Piles ◽  
...  

<p>Modeling and understanding the Earth system is of paramount relevance. Modeling the complex interactions among variables in both space and time is a constant and challenging endevour. When a clear mechanistic model of variable interaction and evolution is not available or uncertain, learning from data can be an alternative. </p><p>Currently, Earth observation (EO) remote sensing data provides almost continuous space and time sampling of the Earth system which has been used to monitor our planet with advanced, semiautomatic algorithms able to classify and detect changes, and to retrieve relevant biogeophysical parameters of interest. Despite great advances in classification and regression, learning from data seems an ilusive problem in machine learning for the Earth sciences. The hardest part turns out to be the extraction of their relevant information and figuring out reliable models for summarizing, modeling, and understanding variables and parameters of interest.</p><p> </p><p>We introduce the use of machine learning techniques to bring systems of ordinary differential equations (ODEs) to light purely from data. Learning ODEs from stochastic variables is a challenging problem, and hence studied scarcely in the literature. Sparse regression algorithms allow us to explore the space of solutions of ODEs from data. Owing to the Occam's razor, and exploiting extra physics-aware regularization, the presented method identifies the most expressive and simplest ODEs explaining the data. From the learned ODE, one not only learns the underlying dynamical equation governing the system, but standard analysis allows us to also infer collapse, turning points, and stability regions of the system. We illustrate the methodology using some particular remote sensing datasets quantifying biosphere and vegetation status. These analytical equations come to be self-explanatory models which may provide insight into these particular Earth Subsystems.</p>


2012 ◽  
Vol 573-574 ◽  
pp. 271-276
Author(s):  
Ping Ren ◽  
Jie Ming Zhou

The existing Fengyun (FY) satellites, resource satellites and ocean satellites all can observe the earth muti-funtionally and work well in monitoring environment and disasters. However, all these satellites are insufficient for space resolution, time resolution, spectral resolution and all-weather requirements when facing complicated environmental problems and natural disasters. This paper evaluates the multi-spectral remote sensing data quality of the Environment and Disasters Monitoring Micro-satellite Constellation (HJ-1A/B)A/B satellite and extracts data characteristics to offer references for promotion and application this data.


2019 ◽  
Vol 53 (1) ◽  
pp. 80-94
Author(s):  
Ihor V. Kholoshyn ◽  
Iryna M. Varfolomyeyeva ◽  
Olena V. Hanchuk ◽  
Olga V. Bondarenko ◽  
Andrey V. Pikilnyak

The article dwells upon the Earth remote sensing data as one of the basic directions of Geo-Information Science, a unique source of information on processes and phenomena occurring in almost all spheres of the Earth geographic shell (atmosphere, hydrosphere, lithosphere, etc.). The authors argue that the use of aerospace images by means of the information and communication technologies involvement in the learning process allows not only to increase the information context value of learning, but also contributes to the formation of students’ cognitive interest in such disciplines as geography, biology, history, physics, computer science, etc. It has been grounded that remote sensing data form students’ spatial, temporal and qualitative concepts, sensory support for the perception, knowledge and explanation of the specifics of objects and phenomena of geographical reality, which, in its turn, provides an increase in the level of educational achievements. The techniques of aerospace images application into the modern school practice have been analyzed and illustrated in the examples: from using them as visual aids, to realization of practical and research orientation of training on the basis of remote sensing data. Particular attention is paid to the practical component of the Earth remote sensing implementation into the modern school practice with the help of information and communication technologies.


Author(s):  
K. Kunavin ◽  
◽  
E. Grishin ◽  

The article discusses the problem of development and testing of the methods of remote sensing data (satellite photos and multichannel orthophotomaps) usage for researching the natural-ecological aspects of economic activity in Russia in modern times by the example of a small territory in the south of Tambov region. The procedure of the searching for visual anomalies is described as well as the results of their concrete-historical interpretation


Sign in / Sign up

Export Citation Format

Share Document