Learning Deep Models from Weak Labels for Water Surface Segmentation in Sar Images

Author(s):  
Francesco Asaro ◽  
Gianluca Murdaca ◽  
Claudio Maria Prati
2021 ◽  
Vol 13 (20) ◽  
pp. 4136
Author(s):  
Hiroto Nagai ◽  
Takahiro Abe ◽  
Masato Ohki

Space-based synthetic aperture radar (SAR) is a powerful tool for monitoring flood conditions over large areas without the influence of clouds and daylight. Permanent water surfaces can be excluded by comparing SAR images with pre-flood images, but fluctuating water surfaces, such as those found in flat wetlands, introduce uncertainty into flood mapping results. In order to reduce this uncertainty, a simple method called Normalized Backscatter Amplitude Difference Index (NoBADI) is proposed in this study. The NoBADI is calculated from a post-flood SAR image of backscatter amplitude and multiple images on non-flooding conditions. Preliminary analysis conducted in the US state of Florida, which was affected by Hurricane Irma in September 2017, shows that surfaces frequently covered by water (more than 20% of available data) have been successfully excluded by means of C-/L-band SAR (HH, HV, VV, and VH polarizations). Although a simple comparison of pre-flood and post-flood images is greatly affected by the spatial distribution of the water surface in the pre-flood image, the NoBADI method reduces the uncertainty of the reference water surface. This advantage will contribute in making quicker decisions during crisis management.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


2020 ◽  
Vol 20 (3) ◽  
pp. 343-353
Author(s):  
Ngo Van He ◽  
Le Thi Thai

In this paper, a commercial CFD code, ANSYS-Fluent has been used to investigate the effect of mesh number generated in the computed domain on the CFD aerodynamic performances of a container ship. A full-scale model of the 1200TEU container ship has been chosen as a reference model in the computation. Five different mesh numbers for the same dimension domain have been used and the CFD aerodynamic performances of the above water surface hull of the ship have been shown. The obtained CFD results show a remarkable effect of mesh number on aerodynamic performances of the ship and the mesh convergence has been found. The study is an evidence to prove that the mesh number has affected the CFD results in general and the accuracy of the CFD aerodynamic performances in particular.


2019 ◽  
Vol 50 (5) ◽  
pp. 511-520
Author(s):  
Aleksey Ivanovich Arzhanov ◽  
Sergey Viktorovich Dikiy ◽  
Yuriy Fedorovich Zhuravlev ◽  
Svyatoslav Vladimirovich Kalashnikov ◽  
Nikolay Arkadievich Shulman

Sign in / Sign up

Export Citation Format

Share Document