Effect of mesh on CFD aerodynamic performances of a container ship

2020 ◽  
Vol 20 (3) ◽  
pp. 343-353
Author(s):  
Ngo Van He ◽  
Le Thi Thai

In this paper, a commercial CFD code, ANSYS-Fluent has been used to investigate the effect of mesh number generated in the computed domain on the CFD aerodynamic performances of a container ship. A full-scale model of the 1200TEU container ship has been chosen as a reference model in the computation. Five different mesh numbers for the same dimension domain have been used and the CFD aerodynamic performances of the above water surface hull of the ship have been shown. The obtained CFD results show a remarkable effect of mesh number on aerodynamic performances of the ship and the mesh convergence has been found. The study is an evidence to prove that the mesh number has affected the CFD results in general and the accuracy of the CFD aerodynamic performances in particular.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3489
Author(s):  
Hayrettin Bora Karayaka ◽  
Yi-Hsiang Yu ◽  
Eduard Muljadi

The power harnessed by wave energy converters (WECs) in oceans is highly variable and, therefore, has a high peak-to-average power (PTAP) ratio. To minimize the cost of a WEC power take off (PTO) system, it is desirable to reduce the PTAP ratio while maximizing the mean power extracted by WECs. The important issue of how PTAP ratio reduction measures (such as adding an inertia element) can affect the mean power extracted in a reference model has not been thoroughly addressed in the literature. To investigate this correlation, this study focuses on the integration of the U.S. Department of Energy’s Reference Model 3, a two-body point absorber, with a slider-crank WEC for linear-to-rotational conversion. In the first phase of this study, a full-scale numerical model was developed that predicts how PTO system parameters, along with an advanced control algorithm, can potentially affect the proposed WEC’s PTAP ratio as well as the mean power extracted. In the second phase, an appropriate scaled-down model was developed, and extracted power results were successfully validated against the full-scale model. Finally, numerical and hardware-in-the-loop (HIL) simulations based on the scaled-down model were designed and conducted to optimize or make trade-offs between the operational performance and PTAP ratio. The initial results with numerical and HIL simulations reveal that gear ratio, crank radius, and generator parameters substantially impact the PTAP ratio and mean power extracted.


2021 ◽  
Vol 21 (1) ◽  
pp. 37-46
Author(s):  
He Ngo Van ◽  
Thuan Truong Van

In this paper, we present a research on applying a commercial Computational Fluid Dynamics (CFD) code to determine interaction effect between hull and accommodation on wind drag of a container ship. For the high superstructure and large windward area ships such as container, wind drag acting on hull accounts for a large amount of total resistance. To clearly find aerodynamic performance and interaction effects on wind drag of a container ship, a full scale 1,200 TEU container has been used as a reference model. From results of comparison in the two computed cases of hull with and without accommodation, the interaction effects between hull and accommodation on aerodynamic performance and wind drag have been investigated. The targets of the paper has proposed a new solution to improve aerodynamic performances and reduce wind drag acting on the ship by reducing interaction effects between hull and accommodation.


2020 ◽  
Vol 8 (11) ◽  
pp. 930
Author(s):  
Ngo Van He ◽  
Ngo Van Hien ◽  
Van-Thuan Truong ◽  
Ngoc-Tam Bui

In this paper, we present our research on applying the commercial Computational Fluid Dynamics (CFD) code to investigate interaction effect between hull and accommodation on wind drag acting above the water hull surface of a full scale 1200 TEU container ship. With this purpose, aerodynamic performances and wind drag acting on the ship hull with and without accommodations have been computed. Analyzing the obtained CFD results, the interaction effect between hull and accommodation on aerodynamic performances and wind drag acting on the ship have been found. Various new accommodation shapes have been proposed for the original ship to reduce the interaction effect on wind drag. A drastic reduction in the interaction effect between hull and accommodation on wind drag acting on the ship has been achieved and the obtained results have been shown in this paper.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


Author(s):  
John Halkyard ◽  
Senu Sirnivas ◽  
Samuel Holmes ◽  
Yiannis Constantinides ◽  
Owen H. Oakley ◽  
...  

Floating spar platforms are widely used in the Gulf of Mexico for oil production. The spar is a bluff, vertical cylinder which is subject to Vortex Induced Motions (VIM) when current velocities exceed a few knots. All spars to date have been constructed with helical strakes to mitigate VIM in order to reduce the loads on the risers and moorings. Model tests have indicated that the effectiveness of these strakes is influenced greatly by details of their design, by appurtenances placed on the outside of the hull and by current direction. At this time there is limited full scale data to validate the model test results and little understanding of the mechanisms at work in strake performance. The authors have been investigating the use of CFD as a means for predicting full scale VIM performance and for facilitating the design of spars for reduced VIM. This paper reports on the results of a study to benchmark the CFD results for a truss spar with a set of model experiments carried out in a towing tank. The focus is on the effect of current direction, reduced velocity and strake pitch on the VIM response. The tests were carried out on a 1:40 scale model of an actual truss spar design, and all computations were carried out at model scale. Future study will consider the effect of external appurtenances on the hull and scale-up to full scale Reynolds’ numbers on the results.


2021 ◽  
Author(s):  
Tomoki Ikoma ◽  
Shota Hirai ◽  
Yasuhiro Aida ◽  
Koichi Masuda

Abstract Wave energy converters (WECs) have been extensively researched. The behaviour of the oscillating water column (OWC) in OWC WECs is extremely complex due to the interaction of waves, air, and turbines. Several problems must be overcome before such WECs can be put to practical use. One problem is that the effect of the difference in scale between a small-scale experimental model and a full-scale model is unclear. In this study, several OWC models with different scales and geometries were used in forced oscillation tests. The wave tank was 7.0 m wide, 24.0 m long, and 1.0 m deep. In the static water experiment, we measured the air pressure and water surface fluctuations in an air chamber. For the experiments, models with a box shape with an open bottom, a manifold shape with an open bottom, and a box shape with a front opening, respectively, were fabricated. Furthermore, 1/1, 1/2, and 1/4 scale models were fabricated for each shape to investigate the effects of scale and shape on the air chamber characteristics. Numerical calculations were carried out by applying linear potential theory and the results were compared with the experimental values. The results confirmed that the air chamber shape and scale affect the air pressure fluctuation and water surface fluctuation inside the OWC system.


Author(s):  
Halvor Lie ◽  
Henning Braaten ◽  
Jamison Szwalek ◽  
Massimiliano Russo ◽  
Rolf Baarholm

For deep-water riser systems, Vortex Induced Vibrations (VIV) may cause significant fatigue damage. It appears that the knowledge gap of this phenomenon is considerable and this has caused a high level of research activity over the last decades. Small scale model tests are often used to investigate VIV behaviour. However, one substantial uncertainty in applying such results is scaling effects, i.e. differences in VIV response in full scale flow and small scale flow. To (partly) overcome this obstacle, a new innovative VIV test rig was designed and built at MARINTEK to test a rigid full scale riser model. The rigid riser model is mounted vertically and can either be elastically mounted or be given a forced motion. In the present version, the cylinder can only move in the cross-flow (CF) direction and is restricted in the in-line (IL) direction. The paper reports results from a drilling riser VIV experiment where the new rest rig has been used. The overall objective of the work is to study possible VIV suppression to improve operability of retrievable riser systems with auxiliary lines by adding riser fins. These fins are normally used as devices for protection of the auxiliary lines. The test program has recently been completed and analysis is an on-going activity. However, some results can be reported at this stage and more results are planned to be published. A bare riser model was used in a Reynolds number (Rn) scaling effect study. The riser model was elastically mounted and towed over a reduced velocity range around 4 – 10 in two different Rn ranges, 75 000 – 192 000 (subcritical regime) and 347 000 – 553 000 (critical regime). The difference in the displacement amplitude to diameter ratio, A/D, is found to be significant. The elastically mounted riser was also towed with various drilling riser configurations in order to study VIV/galloping responses. One configuration included a slick joint riser model with 6 kill & choke lines; another has added riser fins too. The riser model is based on a specific drilling riser and the kill and choke lines have various diameters and have a non-symmetrical layout. The various riser configurations have also been used in forced motion tests where the towed model has been given a sinusoidal CF motion. Forces have been measured. Determination of the force coefficients is still in progress and is planned to be reported later. Scaling effects appear to be a significant uncertainty and further research on the subject is recommended. The slick joint drilling riser configuration generally increased the displacements compared to displacements of the bare riser model. The drilling riser configuration with protection fins, kill and choke lines generally reduced the displacements compared to displacements of the bare riser model. For both riser systems, tests showed that the response is sensitive to the heading of the current.


Sign in / Sign up

Export Citation Format

Share Document