Amplitue Estimation of Dominant Tidal Constituents Using Gnss Interferometric Reflectometry Technique

Author(s):  
Yusof Ghiasi ◽  
Saeed Farzaneh ◽  
Kamal Parvazi ◽  
Claude R. Duguay
Keyword(s):  
Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 489
Author(s):  
Vanessa Sohrt ◽  
Sebastian S.V. Hein ◽  
Edgar Nehlsen ◽  
Thomas Strotmann ◽  
Peter Fröhle

Estuaries are often modified by human activities. Adjustments in the morphology of an estuary have a potential impact on the hydrodynamics and on the reflection behavior of the tide. The influence of such system changes on the complex tidal regime with a large number of superimposed tidal constituents is not fully understood yet. The reflection properties of estuaries that are characterized by abrupt changes in geometry are systematically investigated on the basis of simplified estuary model approaches to improve the understanding of the oscillation and reflection behavior of tidal waves in estuaries. The reflection coefficients at abrupt cross-sectional changes are determined by two different methods, i.e., an analytical energy-based approach and a hydrodynamic numerical (HN) model. Comparisons indicate a high agreement of the results of the different methods when evaluating the reflection coefficient. The tidal constituents are reflected at partial and total reflectors and amplified by shoaling depending on the water depths, the height of the bottom step and the horizontal constriction. A harmonic analysis of simulated water level data partly shows the formation and amplification of higher harmonic components as a result of shallow water effects. The interaction with reflectors results in an increasing amplification of the tidal constituents and the tide.


1991 ◽  
Vol 11 (2) ◽  
pp. 203-209 ◽  
Author(s):  
D.G. Bowers ◽  
T.P. Rippeth ◽  
J.H. Simpson

2021 ◽  
Author(s):  
Inger Bij de Vaate ◽  
Henrique Guarneri ◽  
Cornelis Slobbe ◽  
Martin Verlaan

<p>The existence of seasonal variations in major tides has been recognized since decades. Where Corkan (1934) was the first to describe the seasonal perturbation of the M2 tide, many others have studied seasonal variations in the main tidal constituents since. However, most of these studies are based on sea level observations from tide gauges and are often restricted to coastal and shelf regions. Hence, observed seasonal variations are typically dominated by local processes and the large-scale patterns cannot be clearly distinguished. Moreover, most tide models still perceive tides as annually constant and seasonal variation in tides is ignored in the correction process of satellite altimetry. This results in reduced accuracy of obtained sea level anomalies. </p><p>To gain more insight in the large-scale seasonal variations in tides, we supplemented the clustered and sparsely distributed sea level observations from tide gauges by the wealth of data from satellite altimeters. Although altimeter-derived water levels are being widely used to obtain tidal constants, only few of these implementations consider seasonal variation in tides. For that reason, we have set out to explore the opportunities provided by altimeter data for deriving seasonal modulation of the main tidal constituents. Different methods were implemented and compared for the principal tidal constituents and a range of geographical domains, using data from a selection of satellite altimeters. Specific attention was paid to the Arctic region where seasonal variation in tides was expected to be significant as a result of the seasonal sea ice cycle, yet data availability is particularly limited. Our study demonstrates the potential of satellite altimetry for the quantification of seasonal modulation of tides and suggests the seasonal modulation to be considerable. Already for M2 we observed changes in tidal amplitude of the order of decimeters for the Arctic region, and centimeters for lower latitude regions.</p><p> </p><div>Corkan, R. H. (1934). An annual perturbation in the range of tide. <em>Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character</em>, <em>144</em>(853), 537-559.</div>


2015 ◽  
Vol 36 (2) ◽  
pp. 25-36 ◽  
Author(s):  
Dessy Berlianty ◽  
Tetsuo Yanagi

Tide and tidal current model of the Bali Strait in Indonesia is produced by using a Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas (COHERENS). With its resolutions in the horizontal (500meters) and the vertical (4layers), the model well reproduces the four major tidal constituents, namely M2, S2, K1, and O1 tides, and their currents. Furthermore the model is used to investigate the tide-induced residual flow and tidal front in the Bali Strait. As a results, the tide-induced residual flow in the Bali Strait during the spring tide on May 16th in 2010 can be attributed to the variation of the strength of two eddies. The first one is the clockwise circulation in the shallow area at the wide part of the strait, while the second one is the small clockwise circulation in the south of the narrow strait. On the other hand, as suggestion from Simpson and Hunter (1974), the tidal front is determined by the value of log(H/U3) (where is the water depth in meters and the amplitude oftidal current amplitude in ms-1). The front detected by the image of sea surface temperature distribution from the satellite corresponds with the contour log(H/U3) of 6.5.


2011 ◽  
Vol 276 ◽  
pp. 824-829 ◽  
Author(s):  
V. Sanil Kumar ◽  
G. Udhaba Dora ◽  
Sajive Philip ◽  
P. Pednekar ◽  
Jai Singh

Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Daosheng Wang ◽  
Haidong Pan ◽  
Guangzhen Jin ◽  
Xianqing Lv

Abstract. The seasonal variation of tides plays a significant role in water level changes in coastal regions. In this study, seasonal variations of four principal tidal constituents, M2, S2, K1, and O1, in the Bohai Sea, China, were studied by applying an enhanced harmonic analysis method to two time series: 1-year sea level observations at a mooring station (named E2) located in the western Bohai Sea and 17-year sea level observations at Dalian. At E2, the M2 amplitude and phase lag have annual frequencies, with large values in summer and small values in winter, while the frequencies of S2 and K1 amplitudes are also nearly annual. In contrast, the O1 amplitude increases constantly from winter to autumn. The maxima of phase lags appear twice in 1 year for S2, K1, and O1, taking place near winter and summer. The seasonal variation trends estimated by the enhanced harmonic analysis at Dalian are different from those at E2, except for the M2 phase lag. The M2 and S2 amplitudes show semi-annual and annual cycles, respectively, which are relatively significant at Dalian. The results of numerical experiments indicate that the seasonality of vertical eddy viscosity induces seasonal variations of the principal tidal constituents at E2. However, the tested mechanisms, including seasonally varying stratification, vertical eddy viscosity, and mean sea level, do not adequately explain the observed seasonal variations of tidal constituents at Dalian.


2018 ◽  
Vol 6 (4) ◽  
pp. 131 ◽  
Author(s):  
Christine Szpilka ◽  
Kendra Dresback ◽  
Randall Kolar ◽  
T. Massey

This research details the development and validation of the updated Eastern North Pacific (ENPAC) constituent tidal database, referred to as ENPAC15. The database was last updated in 2003 and was developed using the two-dimensional, depth integrated form of the ADvanced CIRCulation coastal hydrodynamic model, ADCIRC. Regional databases, such as ENPAC15, are capable of providing higher resolution near the coast, allowing users to more accurately define tidal forcing for smaller sub-regions. This study follows the same methodology as the EC2015 updates for the eastern coast of the United States and six main areas of improvement in the modeling configurations are examined: (1) placement of the open ocean boundary; (2) higher coastal resolution; (3) updated global bathymetry; (4) updated boundary forcing using two global tidal databases; (5) updated bottom friction formulations; and (6) improved model physics by incorporating the advective terms in ADCIRC. The skill of the improved database is compared to that of its predecessor and is calculated using harmonic data from three sources. Overall, the ENPAC15 database significantly (52% globally) reduces errors in the ENPAC03 database and improves the quality of tidal constituents available for sub-regional models in the ENPAC region.


Sign in / Sign up

Export Citation Format

Share Document