Preliminary study on dependency of basic properties of porous silica ILD thin film on CMP compatibility

Author(s):  
H. Hanahata ◽  
M. Miyamoto ◽  
T. Kamata ◽  
S. Matsuno ◽  
T. Tanabe
Author(s):  
Makio Tamada ◽  
Yuta Sunami

Abstract Mesoporous silica (referred to as MPS), which has pores of hexagonal or cubic structure of several nm to several tens of nm on the surface, is attracting attention as a new material. MPS has a very large specific surface area, so it is used as an adsorbent for gas and water vapor, as a moisture absorbent, and as a separating material. Transparent MPS is also expected to be an optical functional material. MPS thin film is expected to be used as a thin film as an application example. Since MPS thin film can be used in various applications, it will be further developed by mass production. Leads to Therefore, in this study, mass production of MPS thin films and controlled the film thickness was studied. Roll-to-roll (referred to as R2R) production method and a micro gravure printing method was adopted as a method of mass production: transporting polypropylene film and coating on it. As a result, the MPS thin film prepared in this study had a pore structure. it was confirmed that the film thickness could be controlled by changing the peripheral speed ratio. It is considered that the size of the liquid pool between the coating rolls changed. The size and arrangement of the pores could be confirmed by FE-SEM observation.


2014 ◽  
Vol 47 (5) ◽  
pp. 1071-1081 ◽  
Author(s):  
Mahdieh Khatiri ◽  
Hossein Razzaghi ◽  
Ali Panahpour ◽  
Mina Baradaran ◽  
Jahangir Hasani Barbaran

1994 ◽  
Vol 9 (2) ◽  
pp. 179-184
Author(s):  
M. Yamaguchi ◽  
K. Ishihara ◽  
K.I. Arai
Keyword(s):  

Author(s):  
F. Mancarella ◽  
A. Roncaglia ◽  
F. Tamarri ◽  
G. Pizzochero ◽  
G.C. Cardinali ◽  
...  
Keyword(s):  

2002 ◽  
Vol 716 ◽  
Author(s):  
Yoshiaki Oku ◽  
Norikazu Nishiyama ◽  
Shunsuke Tanaka ◽  
Korekazu Ueyama ◽  
Nobuhiro Hata ◽  
...  

AbstractWe have recently developed novel periodic nanoporous silicate glass with high structural stability as low-k thin film by spin-coating method. Periodic porous silicate glass films developed so far cause structural shrinkage (10>∼20% or more) by annealing the spin-coated films. In this investigation we adopt vapor-phase TEOS (tetraethoxysilane)-treatment before anneal. Our novel nanoporous film shows little shift of XRD peak position after annealed at 673K, indicating both the ultimate mechanical strength and the minimization of stress in the interface between the prepared film and the underlying substrate. Such a shrinkage-free periodic nanoporous silica film can possess higher VBD (break down voltage) and lower ILeak (leakage current). In this article we estimate structural properties (including information on pores introduced intentionally) by XRD and TEM observation, and electrical properties (dielectric constant, VBD and ILeak) by IV and CV measurement of this special-treated periodic nanoporous silica film. The dielectric constant of the thus prepared periodic porous silica film with silylation after calcination was evaluated to be around 1.8 at 100kHz.


2003 ◽  
Vol 125 (4) ◽  
pp. 361-367 ◽  
Author(s):  
Xiaoqin Huang ◽  
Assimina A. Pelegri

MEMS (MicroElectroMechanical Systems) are composed of thin films and composite nanomaterials. Although the mechanical properties of their constituent materials play an important role in controlling their quality, reliability, and lifetime, they are often found to be different from their bulk counterparts. In this paper, low-k porous silica thin films spin coated on silicon substrates are studied. The roughness of spin-on coated porous silica films is analyzed with in-situ imaging and their mechanical properties are determined using nanoindentation. A Berkovich type nanoindenter, of a 142.3 deg total included angle, is used and continuous measurements of force and displacements are acquired. It is shown, that the measured results of hardness and Young’s modulus of these films depend on penetration depth. Furthermore, the film’s mechanical properties are influenced by the properties of the substrate, and the reproduction of the force versus displacement curves depends on the quality of the thin film. The hardness of the studied low-k spin coated silica thin film is measured as 0.35∼0.41 GPa and the Young’s modulus is determined as 2.74∼2.94 GPa.


Sign in / Sign up

Export Citation Format

Share Document