Design and characterization of 0.13 µm CMOS and BiCMOS low noise transimpedance amplifiers for high speed optical interconnects

Author(s):  
A. F. Ponchet ◽  
E. M. Bastida ◽  
R. R. Panepucci ◽  
J. W. Swart
1993 ◽  
Vol 37 ◽  
pp. 145-151
Author(s):  
N. Loxley ◽  
S. Cockerton ◽  
B. K. Tanner

AbstractWe show that a very low noise, high dynamic range scintillation detector has major advantages over conventional detectors for characterization of pseudomorphic HEMT structures by high resolution X-ray diffraction. We show that the reduced background enables a second modulation period to be detected, enabling the thickness and composition to be determined independently. Using a conventional X-ray generator and diffractometer we demonstrate that, in a single scan taking only 10 seconds, we are able to obtain sufficiently good data to provide quality assurance.


Author(s):  
Jingru Benner ◽  
Eric Shilyuk ◽  
Jarrod Coletta ◽  
Mehdi Mortazavi ◽  
Anthony D. Santamaria ◽  
...  

Abstract Piezoelectric fans have attracted attentions in the past decades because of their low energy consumption, low noise level, light weight and reliability. A novel form of piezoelectric flapping fan is characterized experimentally and numerically. An experimental setup was built to measure the pressure and flow rate of piezoelectric fans with low static pressure at various frequencies. The fan performance curve was established. A high speed camera system was used to analyze the oscillation motion of the fan wings. The displacement of the leading edge and trailing edge of the piezoelectric fan wings are used as inputs to describe the deflection of the fan in the numerical model. The flow field obtained from the model is analyzed. The vortex shedding is observed and discussed. The pressure and flow rate obtained from the 2D numerical model are compared with the experimental results. The results provide a fundamental understanding of a piezoelectric fan with opposing oscillating wings.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1550
Author(s):  
Dominic Greiffenberg ◽  
Marie Andrä ◽  
Rebecca Barten ◽  
Anna Bergamaschi ◽  
Martin Brückner ◽  
...  

Chromium compensated GaAs or GaAs:Cr sensors provided by the Tomsk State University (Russia) were characterized using the low noise, charge integrating readout chip JUNGFRAU with a pixel pitch of 75 × 75 µm2 regarding its application as an X-ray detector at synchrotrons sources or FELs. Sensor properties such as dark current, resistivity, noise performance, spectral resolution capability and charge transport properties were measured and compared with results from a previous batch of GaAs:Cr sensors which were produced from wafers obtained from a different supplier. The properties of the sample from the later batch of sensors from 2017 show a resistivity of 1.69 × 109 Ω/cm, which is 47% higher compared to the previous batch from 2016. Moreover, its noise performance is 14% lower with a value of (101.65 ± 0.04) e− ENC and the resolution of a monochromatic 60 keV photo peak is significantly improved by 38% to a FWHM of 4.3%. Likely, this is due to improvements in charge collection, lower noise, and more homogeneous effective pixel size. In a previous work, a hole lifetime of 1.4 ns for GaAs:Cr sensors was determined for the sensors of the 2016 sensor batch, explaining the so-called “crater effect” which describes the occurrence of negative signals in the pixels around a pixel with a photon hit due to the missing hole contribution to the overall signal causing an incomplete signal induction. In this publication, the “crater effect” is further elaborated by measuring GaAs:Cr sensors using the sensors from 2017. The hole lifetime of these sensors was 2.5 ns. A focused photon beam was used to illuminate well defined positions along the pixels in order to corroborate the findings from the previous work and to further characterize the consequences of the “crater effect” on the detector operation.


Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jing Wang ◽  
Zhihua Wan ◽  
Zhurong Dong ◽  
Zhengguo Li

The harmonic reducer, with its advantages of high precision, low noise, light weight, and high speed ratio, has been widely used in aerospace solar wing deployment mechanisms, antenna pointing mechanisms, robot joints, and other precision transmission fields. Accurately predicting the performance of the harmonic reducer under various application conditions is of great significance to the high reliability and long life of the harmonic reducer. In this paper, a set of automatic harmonic reducer performance test systems is designed. By using the CANOpen bus interface to control the servo motor as the drive motor, through accurately controlling the motor speed and rotation angle, collecting the angle, torque, and current in real time, the life cycle test of space harmonic reducer was carried out in high vacuum and low temperature environment on the ground. Then, the collected data were automatically analyzed and calculated. The test data of the transmission accuracy, backlash, and transmission efficiency of the space harmonic reducer were obtained. It is proven by experiments that the performance data of the harmonic reducer in space work can be more accurately obtained by using the test system mentioned in this paper, which is convenient for further research on related lubricating materials.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5287
Author(s):  
Hiwa Mahmoudi ◽  
Michael Hofbauer ◽  
Bernhard Goll ◽  
Horst Zimmermann

Being ready-to-detect over a certain portion of time makes the time-gated single-photon avalanche diode (SPAD) an attractive candidate for low-noise photon-counting applications. A careful SPAD noise and performance characterization, however, is critical to avoid time-consuming experimental optimization and redesign iterations for such applications. Here, we present an extensive empirical study of the breakdown voltage, as well as the dark-count and afterpulsing noise mechanisms for a fully integrated time-gated SPAD detector in 0.35-μm CMOS based on experimental data acquired in a dark condition. An “effective” SPAD breakdown voltage is introduced to enable efficient characterization and modeling of the dark-count and afterpulsing probabilities with respect to the excess bias voltage and the gating duration time. The presented breakdown and noise models will allow for accurate modeling and optimization of SPAD-based detector designs, where the SPAD noise can impose severe trade-offs with speed and sensitivity as is shown via an example.


2015 ◽  
Vol 24 (10) ◽  
pp. 108506
Author(s):  
Qing-Tao Chen ◽  
Yong-Qing Huang ◽  
Jia-Rui Fei ◽  
Xiao-Feng Duan ◽  
Kai Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document