A study to stencil printing technology for solder bump assembly

Author(s):  
Mu-Chun Wang ◽  
Zhen-Ying Hsieh ◽  
Kuo-Shu Huang ◽  
Chiao-Hao Tu ◽  
Shuang-Yuan Chen ◽  
...  

Author(s):  
R.W. Kay ◽  
E. de Gourcuff ◽  
M.P.Y. Desmulliez ◽  
G.J. Jackson ◽  
H.A.H. Steen ◽  
...  




2012 ◽  
Vol 2012 (1) ◽  
pp. 000729-000734
Author(s):  
Stephen Kenny ◽  
Kai Matejat ◽  
Sven Lamprecht ◽  
Olivier Mann

Current methods for the formation of pre-solder bumps for flip chip attachment use stencil printing techniques with an appropriate alloy solder paste. The continuing trend towards increased miniaturization and the associated decrease in size of solder resist opening, SRO is causing production difficulties with the stencil printing process. Practical experience of production yields has shown that stencil printing will not be able to meet future requirements for solder bump pitch production below 150μm for these applications. This paper describes latest developments in the electrolytic deposition of solder to replace the stencil printing process; results from production of 90μm bump pitch solder arrays with tin/copper alloy are given. The solder bump is produced with a specially developed electrolytic tin process which fills a photo resist defined structure on the SRO. The photoresist dimensions determine the volume of solder produced and the subsequent bump height after reflow. Investigations on the bump reliability after reflow are shown including copper alloy concentration at 0.7% and x-ray investigation to confirm uniform metal deposition. The self centering mechanism found in the bump production process during reflow is presented and the capability to correct photoresist registration issues. The solder bumps are shown as deposited onto an electroless nickel/gold or electroless nickel/palladium/gold final finish which serves also as a barrier layer to copper diffusion into the solder bump. Discussion of further development work in the production of alloys of tin/copper together with silver are given with first test results.



2004 ◽  
Vol 44 (5) ◽  
pp. 797-803 ◽  
Author(s):  
Dionysios Manessis ◽  
Rainer Patzelt ◽  
Andreas Ostmann ◽  
Rolf Aschenbrenner ◽  
Herbert Reichl




2007 ◽  
Vol 84 (11) ◽  
pp. 2640-2645 ◽  
Author(s):  
Sang-Su Ha ◽  
Dae-Gon Kim ◽  
Jong-Woong Kim ◽  
Jeong-Won Yoon ◽  
Jin-Ho Joo ◽  
...  


Author(s):  
Khodadad Mostakim ◽  
Nahid Imtiaz Masuk ◽  
Md. Rakib Hasan ◽  
Md. Shafikul Islam

The advancement in 3D printing has led to the rapid growth of 4D printing technology. Adding time, as the fourth dimension, this technology ushered the potential of a massive evolution in fields of biomedical technologies, space applications, deployable structures, manufacturing industries, and so forth. This technology performs ingenious design, using smart materials to create advanced forms of the 3-D printed specimen. Improvements in Computer-aided design, additive manufacturing process, and material science engineering have ultimately favored the growth of 4-D printing innovation and revealed an effective method to gather complex 3-D structures. Contrast to all these developments, novel material is still a challenging sector. However, this short review illustrates the basic of 4D printing, summarizes the stimuli responsive materials properties, which have prominent role in the field of 4D technology. In addition, the practical applications are depicted and the potential prospect of this technology is put forward.



TAPPI Journal ◽  
2011 ◽  
Vol 10 (9) ◽  
pp. 7-13
Author(s):  
KHODADAD MALMIRCHEGINI ◽  
FARSHAD SARKHOSH RAHMANI

Flexography is an evolving printing technology that is suitable for printing on coated and uncoated paperboard and board, nonporous substrates including metalized and paperboard foils, and plastic films used especially in the packaging industry. This study evaluated the effect of paperboard and ink characteristics on flexographic print density in paperboard. Three commercial paperboards from different companies were prepared: brown kraft from Thailand, white kraft from Spain, and test liner from Iran. Four samples of process print inks from Iran were used in this investigation. Paperboard properties, such as roughness and water absorption, and ink characteristics, including solids content, PH and particle diameter, were measured. The inks were printed on paperboards using a roll no.15 applicator with a blade metering device, and the print densities were measured. Results showed that solids content, pH, and particle diameter of printing inks influenced print density, while the roughness and water absorption of the three types of paperboard had no significant influence on print density. Results also illustrated that two levels of ink viscosity (25–30 and 50–55 mPa·s) were insignificant to print density.



Author(s):  
Jinghe Han ◽  
◽  
Heeju Chae ◽  
Eunju Ko


Sign in / Sign up

Export Citation Format

Share Document