Design of Metamaterial Absorber for Large Angle Oblique Incidence with Impedance Matching

Author(s):  
Hengyan Hu ◽  
Yang Yang ◽  
Xiaoxiang He ◽  
Yan Chen ◽  
Fukang Li ◽  
...  
2021 ◽  
pp. 2150291
Author(s):  
Fanyi Liu ◽  
Limei Qi

A broadband absorber composed of silicon rods and nickel ground is proposed in the visible band. The absorption above 98% can be obtained in the frequency range of [Formula: see text] THz with strong polarization independence and angle independence. The impedance matching theory and field distributions of eigenmodes are used to analyze the physical mechanism of the broadband absorption. The absorber has a simple structure with only two layers, which is composed of silicon and nickel. Nickel is a non-precious metal, which is cheaper than the precious metal materials commonly used in metamaterial absorber. The proposed cost-effective absorber with simple structure has great potential in the application of solar cells.


2017 ◽  
Vol 50 (38) ◽  
pp. 385304 ◽  
Author(s):  
Xiaojun Huang ◽  
Helin Yang ◽  
Zhaoyang Shen ◽  
Jiao Chen ◽  
Hail Lin ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javad Shabanpour ◽  
Sina Beyraghi ◽  
Homayoon Oraizi

Abstract Ultrawide-angle electromagnetic wave absorbers with excellent mechanical properties are required in many diverse applications such as sensing, and stealth technologies. Here, a novel 3D reconfigurable metamaterial absorber (MMA) consisting of honeycomb and VO2 films is proposed. The proposed MMA exhibits a strong absorptivity above 90% in the widest incident angle up to $$87^\circ $$ 87 ∘ for TM- and TE polarized oblique incidences for THz wave propagating in yoz-plane. Under normal incidence, when VO2 films are in the insulating state, the proposed absorber exhibits high absorptivity in the frequency band of 1–4 THz. By increasing the temperature of the whole structure, the structural transformation of VO2 occurs and turns into the metallic phase. We have shown that under oblique incidence, the ohmic losses of VO2 films especially those parallel to the direction of the incident electric field are the most important absorption principles of the proposed MMA. Due to the ultra wide-angle absorption (angular stability) and mechanical performance, it is expected that the presented MMA may find potential applications, such as camouflage technologies, electromagnetic interference, imaging, and sensing. To the best knowledge of authors, the proposed MMA configuration exhibits the absorptivity in the widest incident angle ever reported.


2011 ◽  
Vol 239-242 ◽  
pp. 1260-1264
Author(s):  
Wei Wei Ji ◽  
Tao Wang ◽  
Yan Nie ◽  
Rong Zhou Gong

Based on the impedance matching and electromagnetic resonant characteristic of composite materials, we present a single-layer metamaterial absorber consisting of arch copper loop and substrate FR-4, of which the resonant frequency depended on the loop’s geometry perimeter. By combining resonant loops with different dimensions together, we can achieve multi-band absorption. The standard finite difference time domain method was used to calculate the magnitudes of reflectance, and then the induced surface current and power loss distributions were demonstrated to analyze the insight physical picture of the multi-band resonant feature. By optimizing the simulation results, the absorptivities of two absorption peaks are all above 98% when the number of copper loops is two, 95% for three absorption peaks of three loops, and 87% for four absorption peaks of four loops.


Author(s):  
Shuguang Fang ◽  
Lianwen Deng ◽  
Pin Zhang ◽  
Lei-Lei Qiu ◽  
Haipeng Xie ◽  
...  

Abstract In this paper, two kinds of dual-band metamaterial absorbers (MMAs) with stable absorption performance based on fractal structures are proposed. As the key feature, with the increase in fractal order, the fractal MMAs can reduce the weight while keeping the absorption performance. The multi-band absorption property is analyzed by multiple L-C resonances generated by the fractal structure. By virtue of good impedance matching characteristics and the synergy of the circuit and electromagnetic resonance, effective and stable microwave absorption is readily achieved. Finally, two prototypes are fabricated for demonstration, and the measurement result is consistent well with the simulation one. As expected, the proposed fractal MMAs have the advantage of low-cost, light-weight, and dual-effective absorption bands, and have great potential in the application of multi-band radar stealth.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 415
Author(s):  
Bui Xuan Khuyen ◽  
Vu Thi Hong Hanh ◽  
Bui Son Tung ◽  
Vu Dinh Lam ◽  
Young Ju Kim ◽  
...  

In this work, the possibility of a switchable metamaterial absorber is proposed to control absorption bandwidth in the WiMAX/LTE (worldwide interoperability for microwave access/long term evolution) band, by taking advantage of the low cost and myriad structural configurations afforded by water-based metamaterials. By exploiting truncated cone-type resonators, the fractional bandwidth of 27.6% of absorption spectrum can be adjusted flexibly to be 7.4% of the narrow-band absorption depending on the volume of injected water, in both simulation and experiment at room temperature. In particular, this control method can be applied stably for different temperature of injected water. We describe a dynamic mechanism for broadband MA, as well as a principle for controlling the absorption characteristics utilizing a combination of magnetic resonance and perfect impedance matching. These results are a stepping-stone towards the realization of smart electronics integrated with multi-functional metamaterials in military, biomedical, communication and other fields.


2019 ◽  
Vol 9 (16) ◽  
pp. 3425 ◽  
Author(s):  
Olivier Rance ◽  
Anne Claire Lepage ◽  
Xavier Begaud ◽  
Kevin Elis ◽  
Nicolas Capet

This article presents the design, realization and measurement of lightweight absorbing material for space applications. The electromagnetic absorber, operating on the [2 GHz, 2.3 GHz] frequency band, is designed for oblique incidence ranging from 35° to 65°. Wide-angle designs are demonstrated to be particularly challenging at oblique incidence and an approach consisting in dividing the surface in two different sectors with respect to the incoming angle is proposed. A specific measurement setup is presented in order to characterize this new kind of evolutive absorber. The measurement results show that the sectorial absorber achieves a reflection coefficient inferior to −11.5 dB, corresponding to an absorptivity above 0.965 on the frequency band [2 GHz, 2.3 GHz] for both TE and TM polarizations for angles of incidence varying from 35° to 65°.


AIP Advances ◽  
2013 ◽  
Vol 3 (10) ◽  
pp. 102118 ◽  
Author(s):  
Tenglong Wanghuang ◽  
Weijian Chen ◽  
Yongjun Huang ◽  
Guangjun Wen

2010 ◽  
Vol 59 (9) ◽  
pp. 6078
Author(s):  
Zhang Yan-Ping ◽  
Zhao Xiao-Peng ◽  
Bao Shi ◽  
Luo Chun-Rong

Sign in / Sign up

Export Citation Format

Share Document