Analysis of VF-DPC PWM converter based STATCOM

Author(s):  
S. Venkateshwarlu ◽  
Bishnu Prasad Muni ◽  
A.D. Rajkumar
Keyword(s):  
Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 473 ◽  
Author(s):  
Bor-Ren Lin ◽  
Yen-Chun Liu

A hybrid PWM converter is proposed and investigated to realize the benefits of wide zero-voltage switching (ZVS) operation, wide voltage input operation, and low circulating current for direct current (DC) wind power conversion and solar PV power conversion applications. Compared to the drawbacks of high freewheeling current and hard switching operation of active devices at the lagging-leg of conventional full bridge PWM converter, a three-leg PWM converter is studied to have wide input-voltage operation (120–600 V). For low input-voltage condition (120–270 V), two-leg full bridge converter with lower transformer turns ratio is activated to control load voltage. For high input-voltage case (270–600 V), PWM converter with higher transformer turns ratio is operated to regulate load voltage. The LLC resonant converter is connecting to the lagging-leg switches in order to achieve wide load range of soft switching turn-on operation. The high conduction losses at the freewheeling state on conventional full bridge converter are overcome by connecting the output voltage of resonant converter to the output rectified terminal of full bridge converter. Hence, a 5:1 (600–120 V) hybrid converter is realized to have less circulating current loss, wide input-voltage operation and wide soft switching characteristics. An 800 W prototype is set up and tested to validate the converter effectiveness.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1520
Author(s):  
José Teixeira Gonçalves ◽  
Stanimir Valtchev ◽  
Rui Melicio ◽  
Alcides Gonçalves ◽  
Frede Blaabjerg

The hybrid three-phase rectifiers (HTR) consist of parallel associations of two rectifiers (rectifier 1 and rectifier 2), each one of them with a distinct operation, while the sum of their input currents forms a sinusoidal or multilevel waveform. In general, rectifier 1 is a GRAETZ (full bridge) (can be combined with a BOOST converter) and rectifier 2 is combined with a DC-DC converter. In this HTR contest, this paper is intended to answer some important questions about those hybrid rectifiers. To obtain the correct answers, the study is conducted as an analysis of a systematic literature review. Thus, a search was carried out in the databases, mostly IEEE and IET, and 34 papers were selected as the best corresponding to the HTR theme. It is observed that the preferred form of power distribution in unidirectional hybrid three-phase rectifiers (UHTR) is 55%Po (rectifier 1) and 45%Po (rectifier 2). For the bidirectional hybrid three-phase rectifiers (BHTR), rectifier 1 preferably takes 90% of Po and 10% of Po is processed by rectifier 2. It is also observed that the UHTR that employ the single-ended primary-inductor converter (SEPIC) or VIENNA converter topologies in rectifier 2 can present sinusoidal input currents with low total harmonic distortion (THD) and high Power Factor (PF), even successfully complying with the international standards. The same can be said about the rectifier that employs a pulse-width (PWM) converter of BOOST topology in rectifier 2. In short, the HTR are interesting because they allow using the GRAETZ full bridge topology in rectifier 1, thus taking advantage of its characteristics, being simple, robust, and reliable. At the same time, the advantages of rectifier 2, i.e., high PF and low THD, are well used. In addition, this article also points out the future direction of research that is still unexplored in the literature, thus giving opportunities for future innovation.


Author(s):  
Lan Zhiming ◽  
Li Chongjian ◽  
Li Yaohua ◽  
Zhu Chunyi ◽  
Wang Chengsheng
Keyword(s):  

2013 ◽  
Vol 321-324 ◽  
pp. 917-920
Author(s):  
Guang Ya Liu ◽  
Xiao Song Li

Three-phase voltage source PWM rectifier generally adopts double closed loop control system. According to the high frequency characteristic of three-phase voltage source PWM rectifier, this paper put forward the setting method of current inner ring regulator and voltage outer ring regulator PI parameter. Finally, it is verified by simulation.


2014 ◽  
Vol 672-674 ◽  
pp. 1012-1015
Author(s):  
He Zhu ◽  
Da Tian Xu ◽  
Hao Ran Zhao

Based on the mathematical model of the PWM converter, control strategy of the grid-side converter directed by the grid voltage and control strategy of the rotor-side converter directed by the stator flux were established combining the vector control theory. The method using the nonlinear simplex algorithm to optimize the PI control parameters of the DFIG unit was first proposed, optimization results proved that this method had good practicality and robustness.


Sign in / Sign up

Export Citation Format

Share Document