Closed-loop Force Control of a Pneumatic Gripper Actuated by Two Pressure Regulators

Author(s):  
Rocco A. Romeo ◽  
Luca Fiorio ◽  
Edwin J. Avila-Mireles ◽  
Ferdinando Cannella ◽  
Giorgio Metta ◽  
...  
Keyword(s):  
Author(s):  
Axel Fehrenbacher ◽  
Christopher B. Smith ◽  
Neil A. Duffie ◽  
Nicola J. Ferrier ◽  
Frank E. Pfefferkorn ◽  
...  

The objective of this research is to develop a closed-loop control system for robotic friction stir welding (FSW) that simultaneously controls force and temperature in order to maintain weld quality under various process disturbances. FSW is a solid-state joining process enabling welds with excellent metallurgical and mechanical properties, as well as significant energy consumption and cost savings compared to traditional fusion welding processes. During FSW, several process parameter and condition variations (thermal constraints, material properties, geometry, etc.) are present. The FSW process can be sensitive to these variations, which are commonly present in a production environment; hence, there is a significant need to control the process to assure high weld quality. Reliable FSW for a wide range of applications will require closed-loop control of certain process parameters. A linear multi-input-multi-output process model has been developed that captures the dynamic relations between two process inputs (commanded spindle speed and commanded vertical tool position) and two process outputs (interface temperature and axial force). A closed-loop controller was implemented that combines temperature and force control on an industrial robotic FSW system. The performance of the combined control system was demonstrated with successful command tracking and disturbance rejection. Within a certain range, desired axial forces and interface temperatures are achieved by automatically adjusting the spindle speed and the vertical tool position at the same time. The axial force and interface temperature is maintained during both thermal and geometric disturbances and thus weld quality can be maintained for a variety of conditions in which each control strategy applied independently could fail.


2017 ◽  
Vol 9 (6) ◽  
pp. 1
Author(s):  
Bomisso G. Jean Marc ◽  
Tour\'{e} K. Augustin ◽  
Yoro Gozo

This paper investigates the problem of exponential stability for a damped Euler-Bernoulli beam with variable coefficients clamped at one end and subjected to a force control in rotation and velocity rotation. We adopt the Riesz basis approach for show that the closed-loop system is a Riesz spectral system. Therefore, the exponential stability and the spectrum-determined growth condition are obtained.


2000 ◽  
Author(s):  
Woosoon Yim

Abstract This paper presents an adaptive force trajectory control of a flexible beam using a piezoceramic actuator. Based on the adaptive backstepping method, a force control system using only force measurement is designed. For the derivation of the control law, it is assumed that parameters of the beam and contact surface stiffness are unknown. It is shown that in the closed-loop system, the contact force tracks a given reference trajectory and the beam vibration is suppressed as well. Digital simulations results show that the closed-loop system has good transient behavior and robust performance in the presence of uncertainties in the parameters of the flexible beam and the contact surface.


Robotica ◽  
1989 ◽  
Vol 7 (4) ◽  
pp. 303-308 ◽  
Author(s):  
G. M. Bone ◽  
M. A. Elbestawi

SUMMARYAn active force control system for robotic deburring based on an active end effector is developed. The system utilizes a PUMA-560 six axis robot. The robot's structural dynamics, positioning errors, and the deburring cutting process are examined in detail. Based on ARMAX plant models identified using the least squares method, a discrete PID controller is designed and tested in real-time. The control system is shown to maintain the force within l N of the reference, and reduce chamfer depth errors to 0.12 mm from the 1 mm possible without closed-loop control.


Author(s):  
Laurel Kuxhaus ◽  
Patrick J. Schimoler ◽  
Jeffrey S. Vipperman ◽  
Angela M. Flamm ◽  
Daniel Budny ◽  
...  

In search of a complete understanding of a joint’s function, one must understand both the anatomic parameters and how the brain controls the joint’s actuation. Accurate measurements of anatomical parameters are critical to non-linear biomechanical modeling and control and also to a clinical understanding of orthopaedic reconstruction. Likewise, new frontiers in the study of neuromuscular control contribute to our understanding of joint structure and function. One approach to study joint function is to use a joint simulator to actuate cadaver limbs. Towards the goals of understanding and improving human elbow joint control, a physiologic elbow joint simulator was previously constructed in our laboratory. It is the first elbow simulator to operate completely under closed-loop control. The closed-loop force control used to study joint mechanics permits measurement of moment arms in cadaveric elbow specimens. We hypothesized that the approach yields comparable results to previously-reported moment arm values.[1]


Sign in / Sign up

Export Citation Format

Share Document